Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Environ Res ; 237(Pt 1): 116922, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598844

ABSTRACT

Shallow lakes are an important natural source of atmospheric methane (CH4), and the input of autochthonous organic matter (OM) into their sediments encourages methanogenesis. Although algal- and macrophytic-originated OM in these lakes are expected to have different impacts on methanogenesis and methanogenic archaeal communities in lake sediments owing to their various properties, their specific influence and role in sediment remain unclear. In this study, a 148-day incubation was carried out by adding algal- and macrophytic-OM to the sediments of shallow eutrophic Lake Chaohu and Lake Taihu in China. CH4 was periodically monitored, while the methanogens were examined via qPCR and high-throughput sequencing at the end of incubation. Algal-OM stimulated CH4 production more than macrophytic-OM in both sediments, with the rates initially increasing and then decreasing before reaching a relative constant. Macrophytic-OM promoted CH4 production to a comparable extent in both lakes, while algal-OM promoted greater CH4 in Lake Chaohu than in Lake Taihu. However, algal-OM did not significantly increase mcrA gene copies, while macrophytic-OM did by 17.0-20.1-fold. Algal-OM potentially promoted the methylotrophic pathway in Lake Taihu but did not change the methanogenic structure in Lake Chaohu. Comparatively, macrophytic-OM promoted CH4 production mainly by acetoclastic methanogen proliferation in both lakes. More CH4 release with algal-OM compared to macrophytic-OM deserves further attention owing to the prevailing increasing algal blooms and the declining macrophyte population in lakes.

2.
Water Res ; 233: 119797, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36870105

ABSTRACT

Clean soil is a potential capping material for controlling internal nutrient loading and helping the recovery of macrophytes in eutrophic lakes, but the long-term effects and underlying mechanisms of clean soil capping under in-situ conditions remain poorly understood. In this study, a three-year field capping enclosure experiment combining intact sediment core incubation, in-situ porewater sampling, isotherm adsorption experiments and analysis of sediment nitrogen (N) and phosphorus (P) fractions was conducted to assess the long-term performance of clean soil capping on internal loading in Lake Taihu. Our results indicate that clean soil has excellent P adsorption and retention capacity as an ecologically safe capping material and can effectively mitigate NH4+-N and SRP (soluble reactive P) fluxes at the sediment-water interface (SWI) and porewater SRP concentration for one year after capping. The mean NH4+-N and SRP fluxes of capping sediment were 34.86 mg m-2 h-1 and -1.58 mg m-2 h-1, compared 82.99 mg m-2 h-1 and 6.29 mg m-2 h-1 for control sediment. Clean soil controls internal NH4+-N release through cation (mainly Al3+) exchange mechanisms, while for SRP, clean soil can not only react with SRP due to its high Al and Fe content, but also stimulate the migration of active Ca2+ to the capping layer, thus precipitating as Ca-bound P (Ca-P). Clean soil capping also contributed to the restoration of macrophytes during the growing season. However, the effect of controlling internal nutrient loading only lasted for one year under in-situ conditions, after which the sediment properties returned to pre-capping conditions. Our results highlight that clean Ca-poor soil is a promising capping material and further research is needed to extend the longevity of this geoengineering technology.


Subject(s)
Soil , Water Pollutants, Chemical , Lakes , Geologic Sediments , Eutrophication , Phosphorus/analysis , Nitrogen/analysis , Water Pollutants, Chemical/analysis , China
3.
Water Res ; 224: 119067, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36108397

ABSTRACT

In shallow lakes, eutrophication leads to a shift of the macrophyte-dominated clear state towards an algae-dominated turbid state. Phosphorus (P) is a crucial element during this shift and is usually concentrated in the suspended particulate matter (SPM) in water. However, the dominant processes controlling internal P release in the algae- (ADA) and macrophyte-dominated (MDA) areas under the influence of P-concentrated SPM remains unclear. In this study, we conducted monthly field observations of P exchange across the sediment-water interface (SWI) with the deposition of SPM in the ADA and MDA of Lake Taihu. Results revealed that both algae- and macrophyte-originated SPM led to the depletion of oxygen across the SWI during summer and autumn. Redox-sensitive P (Fe-P) and organic P (Org-P) were the dominant mobile P fractions in both areas. High fluxes of P across the SWI were observed in both areas during the summer and autumn. However, the processes controlling P release were quite different. In MDA, P release was mostly controlled by a traditional Fe-P dissolution process influenced by the coupled cycling of iron, sulfur, and P. In the ADA, Org-P control was intensified with the deterioration of algal bloom status, accompanied with the dissolution of Fe-P. Evidence from the current study revealed that the dominant process controlling the internal P release might gradually shift from Fe-P to a coupled process of Fe-P and Org-P with the shift of the macrophyte- to an algae-dominated state in shallow eutrophic lakes. The differentiated processes in the MDA and ADA should be given more attention during future research and management of internal P loadings in eutrophic lakes.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Eutrophication , Geologic Sediments , Iron , Lakes , Oxygen , Particulate Matter/analysis , Phosphorus/analysis , Sulfur , Water , Water Pollutants, Chemical/analysis
4.
Environ Pollut ; 312: 120061, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36041568

ABSTRACT

Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH4) and carbon dioxide (CO2), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH4 concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH4 was 2-3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH4. However, unlike CH4, CO2 did not change substantially, and river mouths acted as hotspots for CO2 in most situations. The highest CO2 concentration appeared in winter and was saturated, whereas at other times, CO2 was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO2 in the water and increased dissolved oxygen and pH. The increase in CH4 in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO2 from atmosphere and increasingly release CH4, therefore, the contribution of the bay to the lake's CH4 emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.


Subject(s)
Greenhouse Gases , Lakes , Bays , Carbon Dioxide/analysis , China , Ecosystem , Eutrophication , Greenhouse Gases/analysis , Methane/analysis , Oxygen , Water
5.
J Environ Manage ; 320: 115884, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940015

ABSTRACT

Internal nutrient loadings pose a high risk of being an additional N and P source, exacerbating eutrophication and deteriorating water quality. In this study, we selected the Daheiting Reservoir (DHTR) in North China, with a pronounced water level gradient, to investigate internal N and P loadings, estimate N and P fluxes across the sediment‒water interface based on the pore water profiles, and reveal the potential effects of water discharge from an upstream reservoir and high-intensity cage aquaculture on the risks of internal N and P release. The results indicated that DHTR presented with severe internal nutrient loadings, and the N and P fluxes showed significant spatiotemporal variations. NH4+-N and soluble reactive phosphorus (SRP) fluxes were higher in deep areas (averages of 26.14 and 9.9 mgm-2d-1, respectively) than in shallow areas near inflows (averages of 5.0 and 1.24 mgm-2d-1, respectively). Unexpectedly, the estimated NH4+-N and SRP fluxes were the lowest in summer (averages of 3.94 and 0.33 mgm-2d-1, respectively), which may have been influenced by seasonal thermal stratification and copious discharge from the hypolimnion of the upstream reservoir (Panjiakou Reservoir). Comparison of annual internal and external N and P loadings revealed that water discharge from the upstream Panjiakou Reservoir was the dominant source of N and P to the reservoir, contributing up to 83.6% of N input and 55.4% of P input. The internal P loading also contributed to water eutrophication to a great extent, accounting for 34.7% of the total P input. Our results highlight the impact of upstream reservoir discharge operation on downstream reservoir water quality and the importance of controlling the internal nutrient loading in cascade reservoirs, and further provide theoretical and practical foundations for the development of policies and strategies to conserve reservoir ecosystems.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring/methods , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 319: 115681, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35816961

ABSTRACT

Water eutrophication is a serious global issue because of excess external and internal nutrient inputs. Understanding the intensity and contribution of internal nitrogen (N) and phosphorus (P) loading in deep-water ecosystems is of great significance for water body eutrophication management. In this study, we combined intact sediment core incubation, high-resolution peeper (HR-Peeper) sampling, and analysis of N and P forms and other environmental factors in the water column and sediments to evaluate the contributions of internal N and P loading to water eutrophication by N and P fluxes across the sediment-water interface (SWI) of the Panjiakou Reservoir (PJKR), a deep-water ecosystem where eutrophication threatens the security of the local drinking water supply in North China. The results indicated that the PJKR showed obvious thermal and dissolved oxygen (DO) stratification in the warm seasons and full mixing in the cold seasons. The mean DO concentration was 9.9 and 3.55 mg/L in the epilimnion and hypolimnion, respectively, in warm seasons and 10.7 mg/L in cold seasons. The sediment acted as a source of soluble reactive phosphorus (SRP), NH4+-N, and NO2--N and a sink of NO3--N. The SRP fluxes were 5.28 ± 4.34 and 2.30 ± 1.93 mg m-2·d-1 in warm and cold seasons, respectively, and the dissolved inorganic nitrogen (DIN) fluxes were -0.66 ± 47.84 and 44.04 ± 84.05 mg m-2·d-1. Seasonal hypoxia accelerated the release of P rather than N from the sediments in warm seasons, which came mainly from Fe-P and Org-P under anoxic conditions. The strong negative NO3--N flux (diffusion from the water column to the sediment) implied an intensive denitrification process at the SWI, which can counteract the release flux of NH4+-N and NO2--N, resulting in the sediment acting as a weak dissolved inorganic nitrogen (DIN) source for the overlying water. We also found that internal N loading accounted for only ∼9% of the total N loading, while internal P loading accounted for 43% of the total P loading of the reservoir. Our results highlight that efforts to manage the internal loading of deep-water ecosystems should focus on P and seasonal hypoxia.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring/methods , Eutrophication , Geologic Sediments/analysis , Humans , Hypoxia , Lakes , Nitrogen/analysis , Nitrogen Dioxide/analysis , Phosphorus/analysis , Water/analysis , Water Pollutants, Chemical/analysis
7.
J Hazard Mater ; 433: 128791, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35366452

ABSTRACT

Humic acid (HA) and phosphate interactions play a vital role in the biogeochemical cycle of carbon and nutrients and thus the trophic state of a lake. The adsorption behavior of HAs to sediments in the absence and presence of phosphate was investigated in this study. Three types of HAs were used, AHA from algae-dominated lake sediments, MHA from macrophyte-dominated lake sediments, and a reference HA (RHA) with terrestrial sources. The adsorption capacity of lake sediments was highest for AHA, which can be explained by that AHA contained more carboxyl-containing molecules, proteinaceous compounds and polysaccharides that were preferentially adsorbed by minerals. Phosphate showed a stronger inhibitory effect on MHA adsorption than on AHA adsorption, suggesting that AHA can more effectively replace phosphate adsorbed to sediments. Our findings show that the functional groups of organic compounds control not only their fractionation and burial but also their ability to replace phosphate in sediments. We propose a novel mechanism to explain the legacy effect of lake eutrophication. That is, as lakes shift from a macrophyte-dominated state to more eutrophic, algae-dominated state, increasing algae-derived organic compounds can promote the release of phosphate from sediments, forming a positive feedback loop that sustains internal phosphorus loading and hence lake eutrophication.


Subject(s)
Lakes , Water Pollutants, Chemical , Adsorption , China , Environmental Monitoring , Eutrophication , Geologic Sediments/chemistry , Humic Substances/analysis , Lakes/chemistry , Phosphates , Phosphorus/analysis , Water Pollutants, Chemical/analysis
8.
Huan Jing Ke Xue ; 43(3): 1481-1491, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258212

ABSTRACT

Rivers are an important emission source of greenhouse gases. To explore the spatial characteristics and influencing factors of N2O emission from the coastal rivers in Tianjin City, six rivers into the Bohai Sea from different land-use types were selected, and the N2O concentrations, saturation, and diffusive fluxes were measured using the headspace-gas chromatography method. The N2O concentration was in supersaturation, and the rivers were the source of atmospheric N2O. The average concentration, saturation, and diffusive fluxes of N2O were (23.85±15.20) nmol·L-1, (309.71±197.38)%, and (27.04±16.46) µmol·(m2·d)-1, with the ranges of 12.70-115.69 nmol·L-1, 164%-1502%, and 9.17-244.79 µmol·(m2·d)-1, respectively. The N2O concentrations and diffusive fluxes of the rivers presented great spatial heterogeneity, with the sewage river (Huangdipai River)>urban river (Haihe River main stream, Jiyun River)>suburban river (Duliujian River, Yongding Xinhe River)>agricultural river (Chaobai Xinhe River). The N2O concentration and diffusion fluxes were significantly correlated with salinity, nutrients, and carbon sources. NO3--N and TP contributed greatly to the diffusive flux differences. N2O production and emission greatly related to the nitrogen cycle process in the Tianjin River, and different forms of nitrogen variously contributed to N2O diffusive fluxes. The salinity gradient had the opposite effect on the N2O emission in urban rivers and drainage rivers. The N2O diffusive fluxes of the sewage river in Tianjin were significantly higher than that of other river types. In the future, due to the development of urbanization and the expansion of urban land, more management measures should focus on the hotspots such as the downstream of wastewater treatment plants of sewage rivers, the estuaries of urban rivers, and the residential gathering areas of suburban rivers to reduce N2O emission.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Environmental Monitoring , Estuaries , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Rivers/chemistry
9.
J Environ Sci (China) ; 116: 184-197, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35219417

ABSTRACT

Freshwater reservoirs are regarded as an important anthropogenic source of methane (CH4) emissions. The temporal and spatial variability of CH4 emissions from different reservoirs results in uncertainty in the estimation of the global CH4 budget. In this study, surface water CH4 concentrations were measured and diffusive CH4 fluxes were estimated via a thin boundary layer model in a temperate river-reservoir system in North China, using spatial (33 sites) and temporal (four seasons) monitoring; the system has experienced intensive aquaculture disturbance. Our results indicated that the dissolved CH4 concentration in the reservoir ranged from 0.07 to 0.58 µmol/L, with an annual average of 0.13 ± 0.10 µmol/L, and the diffusive CH4 flux across the water-air interface ranged from 0.66 to 3.61 µmol/(m2•hr), with an annual average of 1.67 ± 0.75 µmol/(m2•hr). During the study period, the dissolved CH4 concentration was supersaturated and was a net source of atmospheric CH4. Notably, CH4 concentration and diffusive flux portrayed large temporal and spatial heterogeneity. The river inflow zone was determined to be a hotspot for CH4 emissions, and its flux was significantly higher than that of the tributary and main basin; the CH4 flux in autumn was greater than that in other seasons. We also deduced that the CH4 concentration/diffusive flux was co-regulated mainly by water temperature, water depth, and water productivity (Chla, trophic status). Our results highlight the importance of considering the spatiotemporal variability of diffusive CH4 flux from temperate reservoirs to estimate the CH4 budget at regional and global scales.


Subject(s)
Methane , Rivers , Carbon Dioxide/analysis , China , Diffusion , Fresh Water , Methane/analysis , Seasons
10.
J Environ Manage ; 302(Pt B): 114106, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34784568

ABSTRACT

Sediment is an important source of matter that causes blackening and odor formation in a water body. The restoration of polluted sediment can suppress algae-induced black blooms to a certain degree. In this study, we compared the control effects of sediment dredging and capping with clean soil on algae-induced black blooms in Lake Taihu using indoor simulation experiments. In addition, we explored the driving effect of temperature on algae-induced black blooms using the method of gradual warming (18, 23, and 28 °C) during the experiment. No blackening of the water body was observed in the simulation stages I (18 °C) and II (23 °C), and the blackening and odor formation occurred within 3 d when the temperature increased to 28 °C in stage III, implying that high temperature was an important driving factor for algae-induced black blooms. Dredging and capping inhibited the blackening and odor formation to some extent, and the colorimetric values in the water columns were lower in the treatment groups than in the control group. At the end of the experiment, the colorimetric values of dredging and capping treatments were 56.5% and 96.7% of the colorimetric value of the control group, respectively. The control effect of dredging on the blackening elements, i.e., Fe2+ and S2- and the main odor forming compounds, i.e., dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) was observed in stage II (11-20 d) and stage III (21-27 d), respectively, and the inhibition ability of dredging to suppress algal-induced black blooms was superior than that of capping with clean soil.


Subject(s)
Lakes , Soil , China , Environmental Monitoring , Eutrophication , Geologic Sediments , Water
11.
Sci Total Environ ; 767: 144868, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33454611

ABSTRACT

Global lakes serve as a key natural source of methane (CH4) and suffer from increasing hypoxia due to unprecedented anthropogenic activities and climate change. A black bloom is a temporary hypoxia triggered by a longstanding algal bloom, which facilitates CH4 production by creating reducing conditions and abundant algae-sourced organic carbon. One-year investigations were conducted to examine temporal CH4 dynamics in the water and sediment pore water in black bloom prone areas (BBPAs) in Lake Taihu, China, where there had been at least two recorded black bloom events. The CH4 in the water changed significantly with time (p < 0.001), with the highest concentrations appearing in warm months when an abnormal lower dissolved oxygen content was observed at different sites, which were one to two orders of magnitude higher than other months. Compared with the control site, there were significantly higher CH4 concentrations in BBPA waters (p < 0.001), which was consistent with the higher CH4 in the sediment pore water. Methane dynamics in the water showed significant positive correlations with temperature, total phosphorus, total nitrogen, ammonia-N, and soluble reactive phosphorus (p < 0.05), but showed a significant inverse correlation with dissolved oxygen (p < 0.01). Redundancy analysis indicated dissolved oxygen made the largest contribution to CH4 dynamics in the BBPAs. A significant increase in the CH4 in water will turn BBPAs into temporary hot spots with substantial CH4 emissions with the appearance of black blooms. The results provide new insights into understanding future CH4 dynamics under globally prevailing algal blooms and climate change.


Subject(s)
Lakes , Methane , China , Eutrophication , Methane/analysis , Phosphorus/analysis
12.
J Hazard Mater ; 406: 124691, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33296762

ABSTRACT

Internal nitrogen (N) loading of lakes is commonly controlled by sediment dredging, although its comprehensive effect on internal N loading remains unclear. Herein, we examined the long-term effects of sediment dredging on internal N loading from a new perspective on the N budget at the sediment-water interface (SWI) through a simulation of field dredging performed by incubating intact sediment cores from a shallow eutrophic lake (Lake Taihu). We further evaluated the role of settling particles (SP) in the recovery of N cycle processes after dredging and its potential impact on the N budget. Our results demonstrated that dredging could help reduce organic matter and total N in sediments; improve the redox environment of the SWI; slow down N mineralization, N fixation, denitrification, and anaerobic ammonia oxidation (anammox); and alter the N budget at the SWI and the contribution of various N cycle processes. However, the input of SP enriched in fresh organic matter and N could accelerate the recovery of N cycle processes at the SWI, reducing the variation in the N budget and the contribution of each N cycle process caused by dredging. Dredging significantly reduced the N flux at the SWI, which was evident from the reduction of inorganic N release flux and N removal through denitrification and anammox. Therefore, sediment dredging has its advantages and disadvantages in managing internal N loading in lakes. To maintain a long-term control on the release of internal N through sediment dredging, measures should be taken based on the in-lake and watershed to inhibit the inflow and settlement of particulate matter.

13.
Sci Total Environ ; 759: 143495, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33213906

ABSTRACT

Shallow lakes account for most of the diffusive CH4 emissions from global lakes, and they also suffer from eutrophication worldwide. Determining the effect of eutrophication on diffusive CH4 fluxes is fundamental to understanding CH4 emissions in shallow lakes. This study aimed to investigate the spatial variations in diffusive CH4 fluxes and explore the role of eutrophication in Lake Chaohu, a large and shallow eutrophic lake in the lower reaches of the Yangtze River. A one-year field observation was carried out to examine CH4 concentrations in the sediment and water and the diffusive fluxes of CH4 across the sediment-water interface (Fs-w) and water-air interface (Fw-a). Both Fs-w (0.306-1.56 mmol m-2 d-1) and Fw-a (0.097-0.529 mmol m-2 d-1) were upward and showed significant spatial heterogeneity and were significantly positively correlated. Parameters related to eutrophication had significant positive relationships with Fw-a, and the total phosphorus distribution in the water explained the greatest proportion of the spatial variation in Fw-a. Distance to shore and water depth were inversely correlated with Fw-a and modified the effects of eutrophication. Overall, the results provide direct evidence of the key role of eutrophication in shaping the spatial distribution of diffusive CH4 fluxes and a scientific basis for predicting changes in CH4 emissions with future eutrophication changes in shallow lakes in subtropical zones.

14.
Environ Res ; 196: 110392, 2021 05.
Article in English | MEDLINE | ID: mdl-33129856

ABSTRACT

Reducing the use of liquid organic carbon electron donors during biostimulation of heterotrophic denitrification is critical for sustainable groundwater remediation. Solid-phase humin isolated from natural sources can provide a cost-effective alternative to classical electron donors. In this study, the low-temperature denitrification capacity of an acetate-fed microbial community was enhanced using humin at 20 °C and 10 °C. These enhancements were not caused by faster acetate consumption and greater bacterial growth with the addition of humin. Estimation of the electron balance and first-order kinetics suggested that the enhancement in denitrification occurred mainly after acetate exhaustion. Humin may therefore have acted as an additional electron donor for the denitrifying microbial community, with the reduced quinone group in humin potentially responsible for electron donation. The addition of humin increased the richness and diversity of the denitrifying microbial community, in which Dechloromonas spp. played a critical role. Given the prevalence of humin and denitrifiers using humic substances, our results have important implications in the bioremediation of nitrate-contaminated groundwater using less liquid organic carbon electron donors.


Subject(s)
Groundwater , Humic Substances , Denitrification , Microbial Consortia , Nitrates , Temperature
15.
J Hazard Mater ; 394: 122548, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32213385

ABSTRACT

Sediment dredging is an effective method to reduce internal phosphorus (P) loading of eutrophic lakes. However, external P loading may diminish the longevity of the effect of sediment dredging on P internal loading, and the mechanism of the same is unclear. Here, we used one-year in-situ simulation experiments to study the migration and transformation processes of P under the effect of external loading (suspended particle matter, SPM) input and internal loading control by dredging. The results showed that dredging can effectively reduce the internal loading and mobility of P, increase the P adsorption and retention capacity of the sediment, and improve the oxidation environment at the sediment-water interface (SWI), thus, inhibiting the release of internal P. The input of SPM, however, can significantly inhibit the above processes and increase the risk of P resupply and release. Temperature, dissolved oxygen, and the P resupply capacity (R) are the key factors affecting the P flux across the SWI. Therefore, it is necessary to control the input of SPM to effectively inhibit eutrophication after dredging. More measures to control the input of SPM, such as establishing buffer zones, ecological wetlands, and forebays, should be explored and applied.

16.
Environ Sci Pollut Res Int ; 27(21): 25861-25869, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31420838

ABSTRACT

Environmental sediment dredging is one of the most common methods for the remediation of contaminated sediments in lakes; however, debate continues as to whether the effectiveness of dredging methods contributes to this phenomenon. To determine sediment resuspension and nutrient release following dredging with a variety of dredging methods, four dredging treatments at wind speeds of 0-5.2 m/s were simulated in this study, namely suction dredging (SD), grab dredging (GD), ideal dredging with no residual sediments (ID), and non-dredging (ND). Field sediments from suction and grab dredging areas (including post-dredged and non-dredged sediments) of Lake Taihu were used to assess the release abilities of soluble reactive phosphorus (SRP) and ammonia nitrogen (NH4+-N) from the sediment-water interface. The effects of residual sediments on nutrient concentrations in water were also evaluated. The results reveal that inhibition of resuspension of particulate matter and nutrients released through sediment dredging decreases with increasing levels of residual sediment. Total suspended particulate matter content in the mean water columns of ID, SD, and GD under wind-induced disturbance (1.7-5.2 m/s) decreased by 67.5%, 56.8%, and 44.3%, respectively; total nitrogen and total phosphorus in ID (SD) treatments were 19.8% (12.9%) and 24.5% (11.2%) lower than that in ND treatment. However, there were ~ 1.6 and 1.5 times higher SRP and NH4+-N in the GD treatment compared with the ND treatment at the end of the resuspension experiment (0 m/s). A significant increase in the SRP and NH4+-N release rates at the sediment-water interface was also observed in field sediments from a grab dredging area, indicating that GD may pose a short-term risk of nutrient release to the water body. Hence, dredging methods with less residual sediments both during and after dredging improves the dredging quality.


Subject(s)
Lakes , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments , Nutrients , Phosphorus/analysis , Water
17.
Environ Sci Pollut Res Int ; 27(21): 25886-25898, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31713142

ABSTRACT

Water-level regime alteration-associated redox fluctuation plays a primary role in governing exchange and transformation of nitrogen (N) in water-level fluctuation zones (WLFZs), while few understanding of how hydrological regimes under reservoir operation affected N cycling across the sediment-water interface (SWI), giving rise to uncertainties in reservoir N nutrient management. Batch microcosm simulation experiments with intact sediment cores from WLFZs of the Three Gorges Reservoir (TGR) were conducted for 24 days to identify holistic flooding-drying process mechanism on N-cycling patterns. Our results showed a distinct transition of N-cycling mode across the SWI, shifting from biological denitrogen loss dominated in initial period of flooding to enhance endogenous N retention. A dramatic source-sink switch of nitrous oxide (N2O) occurred in the first 1.5 days during the flooding period. However, combined accelerating migration of NH4+-N from sediment to overlying water, and subsequently enhanced transformation of NH4+-N to NO3--N formed from flooding to drying rotation, thereby increasing N loading to overlying water. The reason for this investigation could be attributed to intensive N loss through coupled nitrification and denitrification in oxic-anoxic microenvironments after flooding. With oxygen replenishment from atmosphere during drying phase, persistent ammonification of organic N in sediments provided sufficient source of NH4+-N for the formation of NO3--N fraction in a more oxic overlying water. Therefore, water-level regime alteration by reservoir operation was capable of weakening N removal from water body and lengthening internal N turnover time across redox-variable SWI. These findings elucidate new understanding of holistic hydrological regime mechanisms on N cycling across SWI and provide insight to biogenic N nutrient management for improving the green credentials of hydroelectric reservoir.


Subject(s)
Water Pollutants, Chemical/analysis , Water , Geologic Sediments , Nitrogen/analysis , Nitrogen Cycle
18.
Sci Total Environ ; 704: 135318, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31780162

ABSTRACT

The level of eutrophication in reservoirs is dependent on their internal and external P loads. Identifying the P pollution characteristics and its fractional composition in sediments is therefore necessary to determine the potential bioavailability and dominant sources of P for effective water pollution control. In this study, we investigated the P pollution characteristics in the overlying water and sediment in a chain of reservoirs (the Panjiakou (PJK), Daheiting (DHT) and Yuqiao (YQ) Reservoirs) in North China. Our results showed that the P concentrations in the overlying water of the YQ Reservoir was higher than that of the PJK and DHT Reservoirs, but the sediment P loading and P bio-availability were lower than the PJK and DHT Reservoirs. However, the sediment P release risk in the YQ Reservoir was higher than the DHT and PJK Reservoirs. The YQ Reservoir was mainly polluted by internal sediment P release and external sources predominantly derived from the inflowing polluted Sha River Basin. Various forms of P in the DHT Reservoir decreased with depth, and the P in the overlying water column was mainly sourced from internal P release due to sediment accumulation of excess P from human activities. In recent years, the proportion of bio-available P (BAP) in the PJK and YQ Reservoirs had increased, and the proportion of the more inert Al-P and Ca-P in the PJK Reservoir decreased. Ca-P in the YQ Reservoir had also decreased, indicating that inert P has been gradually transformed into active P in the PJK and YQ Reservoirs in recent years. The observed differences in P loading and sedimentary P fractions indicate different pollution characteristics and sources between the three reservoirs. We therefore recommend site-specific remediation strategies for effective control on P pollution in the three eutrophic reservoirs.


Subject(s)
Environmental Monitoring , Phosphorus/analysis , China , Eutrophication , Geologic Sediments , Nitrogen , Water Pollutants, Chemical
19.
Huan Jing Ke Xue ; 40(8): 3539-3549, 2019 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-31854759

ABSTRACT

The effect of external pollution inputs on phosphorus recovery, transport, and transformation in newborn surface layers from sediment dredging remains unclear. Clarifying this issue is important for the control and management of external pollution loads at the watershed scale, particularly after the implementation of sediment dredging activities. In this study, sediments in Meiliang Bay of Lake Taihu were investigated. In-situ dredging simulation was used to study the transport and transformation of phosphorus at the sediment-water interface, before and after dredging, with either external or non-external particulate matter inputs, and to explore the effect of dredging on phosphorus release as part of internal loading. The results showed that limiting the inputs of external particulate matter and dredging had positive impacts on the control of TP and TN in the sediments. Dredging significantly reduced the content of potentially mobile phosphorus (Mobile-P) in surface sediments. Iron-bound phosphorus (Fe-P) was the first main component of the reduced Mobile-P and Organic phosphorus (Org-P) was the second. The content of Loose-bound phosphorus (Lb-P) was less than 1‰ of the total phosphorus. After 210 days of the experiment, the concentration of PO43--P in the pore water of the dredged treatment was lower than that of the undredged treatment, and this difference was more pronounced without external particulate matter input. Furthermore, the concentration of PO43--P in the pore water of the dredged treatment (without external particulate matter input) was maintained at a low level, while this first increased and then subsequently decreased for the other treatments. The concentrations of PO43--P in pore water were positively correlated with Fe-P in the corresponding sediment layers. Source-sink transition took place between winter and spring, leading to the switch in sediment functioning as a sink to a source. The results indicated that dredging could reduce the release rate of internal phosphorus from sediments. Furthermore, limiting the input of external particulate matter plays an important role in facilitating the control of internal phosphorus loading by dredging.

20.
Article in English | MEDLINE | ID: mdl-31450850

ABSTRACT

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3--N), nitrite-N (NO2--N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3--N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3--N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3--N and NO2--N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Lakes/chemistry , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods , Eutrophication/physiology , Humans , Nutrients , Spatio-Temporal Analysis , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...