Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3185, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609368

ABSTRACT

Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.

2.
Angew Chem Int Ed Engl ; 62(19): e202218546, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36853171

ABSTRACT

The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.

3.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507685

ABSTRACT

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

4.
Nanoscale ; 13(45): 18961-18966, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34783820

ABSTRACT

Ruddlesden-Popper perovskites possess a rich variety of multiple phases due to their mixed organic cations and variable layer numbers. However, the direct observation of these phases and their optical performance in ultrathin nanosheets, have rarely been reported. Here we demonstrate, through a one-pot CVD synthesis method to incorporate MA+ and NMA+ cations into PbI2 simultaneously, that the stackings of Ruddlesden-Popper phases with a distribution of a number of layers 〈n〉 can be produced within a single perovskite nanosheet. As featured by the micro-, time-resolved and temperature-dependent photoluminescence measurements, the optical properties are highly dependent on the nanosheet thickness.

5.
Adv Mater ; 32(34): e2002392, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32686130

ABSTRACT

Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI2 as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2 , MAPbI3 and FAPbI3 , can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2 . Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2 /MAPbI3 stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.

6.
J Ophthalmol ; 2020: 2091462, 2020.
Article in English | MEDLINE | ID: mdl-32411426

ABSTRACT

PURPOSE: To determine whether the female gender is a barrier for the access to cataract surgery services in South Asia in the last two decades. METHODS: Eligible cross-sectional studies were identified via computer searches and reviewing the reference lists of the obtained articles. The cataract surgical coverage (CSC) by sex based on person and eyes at visual acuity <3/60 and 6/18 is extracted. Pooled odds ratios (ORs) for males receiving cataract surgery in comparison with females were calculated by a random effect model. RESULTS: Sixteen studies with 135972 subjects were included in the final analysis. The pooled ORs of CSC by sex on a person basis at visual acuity <3/60 and at visual acuity <6/18 were 1.46 (95% CI: 1.23-1.75) and 1.14 (95% CI: 1.05-1.24), respectively. For CSC on a per-eye basis at visual acuity <3/60, the associations were statistically significant, with a pooled OR of 1.40 (95% CI: 1.16-1.70). The values of population attributable risk percentage at a per-person and per-eye basis at visual acuity <3/60 were 6.28% and 7.48%, respectively. Subgroup analyses by design and location types attained similar results as the primary analyses. There was no evidence of publication bias. CONCLUSIONS: The female gender remains a significant barrier for the access to cataract surgery in South Asia. Visual impairment, including blindness, from unoperated cataract, could be reduced by approximately 6.28% with the elimination of gender disparities to access. More efforts are needed to increase eye care service utilization by female population.

SELECTION OF CITATIONS
SEARCH DETAIL
...