Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Anal Chem ; 96(23): 9610-9620, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822784

ABSTRACT

The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.

2.
Nat Commun ; 15(1): 754, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272927

ABSTRACT

The low scattering efficiency of Raman scattering makes it challenging to simultaneously achieve good signal-to-noise ratio (SNR), high imaging speed, and adequate spatial and spectral resolutions. Here, we report a noise learning (NL) approach that estimates the intrinsic noise distribution of each instrument by statistically learning the noise in the pixel-spatial frequency domain. The estimated noise is then removed from the noisy spectra. This enhances the SNR by ca. 10 folds, and suppresses the mean-square error by almost 150 folds. NL allows us to improve the positioning accuracy and spatial resolution and largely eliminates the impact of thermal drift on tip-enhanced Raman spectroscopic nanoimaging. NL is also applicable to enhance SNR in fluorescence and photoluminescence imaging. Our method manages the ground truth spectra and the instrumental noise simultaneously within the training dataset, which bypasses the tedious labelling of huge dataset required in conventional deep learning, potentially shifting deep learning from sample-dependent to instrument-dependent.

3.
Nat Commun ; 14(1): 8035, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052786

ABSTRACT

The strong coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials, with potential applications ranging from ultrasensitive all-optical switching to creating polariton condensates. Often, ubiquitous decoherence processes at ambient conditions limit these couplings to such short time scales that the quantum dynamics of the interacting system remains elusive. Prominent examples are strongly coupled exciton-plasmon systems, which, so far, have mostly been investigated by linear optical spectroscopy. Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array. We observe rich coherent Rabi oscillation dynamics reflecting a plasmon-driven coherent exciton population transfer over mesoscopic distances at room temperature. This opens up new opportunities to manipulate the coherent transport of matter excitations by coupling to vacuum fields.

4.
J Am Chem Soc ; 144(41): 19150-19162, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206456

ABSTRACT

Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.

5.
Phys Chem Chem Phys ; 24(38): 23301-23308, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36165277

ABSTRACT

Orbital interactions between adsorbed molecules and the underlying metal surfaces play critical roles in a wide range of surface and interfacial processes. Establishing a correlation between an experimental observable (e.g., vibrational frequency shift of the adsorbed molecule) and the orbital interactions is of vital importance. Herein, theoretical calculations are used to investigate the vibrational frequency shift of phenyl isocyanide molecules as a probe molecule adsorbed on mono- and bi-layer Pt and Pd covered Au(111) surfaces and Pd2Au4 and Pt2Au4 clusters. By analyzing the density of states (DOS) of the adsorption system, we show that the orbital overlap area of d electronic DOS with a molecular σ or π* orbital, particularly their ratio (Rd-σ/d-π*), can be a meaningful descriptor to explain the frequency shift of the CN moiety. This hypothesis has been verified by simulations for phenyl isocyanide with electron donating NH2- and withdrawing CF3- substituent groups, formonitrile and carbon monoxide. Quasi-linear dependence of the frequency shift on Rd-σ/d-π* is observed for both the red and blue shift regions. Our findings build up on previous notions of electronic interactions, which will provide a more quantitative and solid footing to understand and analyze the frequency shift of adsorbed molecules on metal surfaces and the related electronic interactions and catalytic properties.

6.
ACS Nano ; 16(3): 4693-4704, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35188735

ABSTRACT

Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.

7.
Nat Commun ; 11(1): 1464, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32193407

ABSTRACT

The integration of metallic plasmonic nanoantennas with quantum emitters can dramatically enhance coherent harmonic generation, often resulting from the coupling of fundamental plasmonic fields to higher-energy, electronic or excitonic transitions of quantum emitters. The ultrafast optical dynamics of such hybrid plasmon-emitter systems have rarely been explored. Here, we study those dynamics by interferometrically probing nonlinear optical emission from individual porous gold nanosponges infiltrated with zinc oxide (ZnO) emitters. Few-femtosecond time-resolved photoelectron emission microscopy reveals multiple long-lived localized plasmonic hot spot modes, at the surface of the randomly disordered nanosponges, that are resonant in a broad spectral range. The locally enhanced plasmonic near-field couples to the ZnO excitons, enhancing sum-frequency generation from individual hot spots and boosting resonant excitonic emission. The quantum pathways of the coupling are uncovered from a two-dimensional spectrum correlating fundamental plasmonic excitations to nonlinearly driven excitonic emissions. Our results offer new opportunities for enhancing and coherently controlling optical nonlinearities by exploiting nonlinear plasmon-quantum emitter coupling.

8.
J Am Chem Soc ; 142(3): 1341-1347, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31893500

ABSTRACT

Active oxygen species (AOS) play key roles in many important catalytic reactions relevant to clean energy and environment. However, it remains challenging to characterize the active sites for producing AOS and to image the surface properties of AOS, especially on multicomponent metallic catalyst surfaces. Herein, we utilize tip-enhanced Raman spectroscopy (TERS) to probe the local generation and diffusion of OH radicals on a Pd/Au(111) bimetallic catalyst surface. The reactive OH radicals can be catalytically generated from hydrogen peroxide (H2O2) at the metal surface, which then oxidizes the surface adsorbed thiolate, a reactant that is used as the TERS probe. By TERS imaging of the spatial distribution of unreacted thiolate molecules, we demonstrate that the Pd surface is active for generation of OH radicals and the Pd step edge shows much higher activity than the Pd terrace, whereas the Au surface is inactive. Furthermore, we find that the locally generated OH radicals at the Pd step edge could diffuse to both the Au and the Pd surface sites to induce oxidative reactions, with a diffusion length estimated to be about 5.4 nm. Our TERS imaging with few-nanometer spatial resolution not only unravels the active sites but also characterizes in real space the diffusion behavior of OH radicals. The results are highly valuable to understand AOS-triggered catalytic reactions. The strategy of using reactants with large Raman cross sections as TERS probes may broaden the application of TERS for studying catalysis with reactive small molecules.

9.
Nat Nanotechnol ; 14(7): 698-704, 2019 07.
Article in English | MEDLINE | ID: mdl-31086304

ABSTRACT

The coherent exchange of optical near fields between two neighbouring dipoles plays an essential role in the optical properties, quantum dynamics and thus the function of many naturally occurring and artificial nanosystems. These interactions are challenging to quantify experimentally. They extend over only a few nanometres and depend sensitively on the detuning, dephasing and relative orientation (that is, the vectorial properties) of the coupled dipoles. Here, we introduce plasmonic nanofocusing spectroscopy to record coherent light scattering spectra with 5 nm spatial resolution from the apex of a conical gold nanotaper. The apex is excited solely by evanescent fields and coupled to plasmon resonances in a single gold nanorod. We resolve resonance energy shifts and line broadenings as a function of dipole distance and relative orientation. We demonstrate how these phenomena arise from mode couplings between different vectorial components of the interacting optical near fields, specifically from the coupling of the nanorod to both transverse and longitudinal polarizabilities of the taper apex.

10.
Angew Chem Int Ed Engl ; 57(40): 13177-13181, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30133087

ABSTRACT

Resolving atomic site-specific electronic properties and correlated substrate-molecule interactions is challenging in real space. Now, mapping of sub-10 nm sized Pt nanoislands on a Au(111) surface was achieved by tip-enhanced Raman spectroscopy, using the distinct Raman fingerprints of adsorbed 4-chlorophenyl isocyanide molecules. A spatial resolution better than 2.5 nm allows the electronic properties of the terrace, step edge, kink, and corner sites with varying coordination environments to be resolved in real space in one Pt nanoisland. Calculations suggest that low-coordinate atomic sites have a higher d-band electronic profile and thus stronger metal-molecule interactions, leading to the observed blue-shift of Raman frequency of the N≡C bond of adsorbed molecules. An experimental and theoretical study on Pt(111) and mono- and bi-atomic layer Pt nanoislands on a Au(111) surface reveals the bimetallic effect that weakens with the increasing number of deposited Pt adlayer.

11.
Nano Lett ; 18(8): 4957-4964, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29996060

ABSTRACT

Porous nanosponges, percolated with a three-dimensional network of 10 nm sized ligaments, recently emerged as promising substrates for plasmon-enhanced spectroscopy and (photo)catalysis. Experimental and theoretical work suggests surface plasmon localization in some hot-spot modes as the physical origin of their unusual optical properties, but so far the existence of such hot-spots has not been proven. Here we use scattering-type scanning near-field nanospectroscopy on individual gold nanosponges to reveal spatially and spectrally confined modes at 10 nm scale by recording local near-field scattering spectra. High quality factors of individual hot-spots of more than 40 are demonstrated, predicting high Purcell factors up to 106. The observed field localization and enhancement make such nanosponges an appealing platform for a variety of applications ranging from nonlinear optics to strong-coupling physics.

12.
Adv Mater ; 30(12): e1706031, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29405444

ABSTRACT

Surface plasmon polaritons (SPPs) are extremely sensitive to the surrounding refractive index and have found important applications in ultrasensitive label-free sensing. Reducing the linewidth of an SPP mode is an effective way to improve the figure of merit (FOM) and hence the sensitivity of the plasmonic mode. Many efforts have been devoted to achieving a narrow linewidth by mode coupling, which inevitably results in an asymmetrical lineshape compromising the performance. Instead, the SPP modes are directly narrowed by elaborately engineering periodic plasmonic structures with minimized feature sizes to effectively reduce the radiative losses. A narrow linewidth smaller than 8 nm is achieved over a wide wavelength ranging from 600 to 960 nm and a minimum full width at half maximum of 3 nm at 960 nm. Benefiting from the almost perfect Lorentzian lineshape and the extremely narrow linewidth, a record FOM value of 730 is obtained. The sensor is capable of detecting bovine serum albumin with an ultralow concentration of 10-10 m. The sensor has great potential for practical application for its ultrahigh FOM, broad working wavelength, and ease of high-throughput fabrication.

13.
Chem Soc Rev ; 46(13): 4020-4041, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28590479

ABSTRACT

Surface and interfaces play key roles in heterogeneous catalysis, electrochemistry and photo(electro)chemistry. Tip-enhanced Raman spectroscopy (TERS) combines plasmon-enhanced Raman spectroscopy with scanning probe microscopy to simultaneously provide a chemical fingerprint and morphological information for the sample at the nanometer spatial resolution. It is an ideal tool for achieving an in-depth understanding of the surface and interfacial processes, so that the relationship between structure and chemical performance can be established. We begin with the background of surfaces and interfaces and TERS, followed by a detailed discussion on some issues in experimental TERS, including tip preparation and TERS instrument configuration. We then focus on the progress of TERS for studying the surfaces and interfaces under different conditions, from ambient, to UHV, solid-liquid and electrochemical environments, followed by a brief introduction to the current understanding of the unprecedented high spatial resolution and surface selection rules. We conclude by discussing the future challenges for TERS practical applications in surfaces and interfaces.

14.
Nat Commun ; 8: 14891, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28348368

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates.

15.
Nat Nanotechnol ; 12(2): 132-136, 2017 02.
Article in English | MEDLINE | ID: mdl-27870842

ABSTRACT

An atomic- and molecular-level understanding of heterogeneous catalysis is required to characterize the nature of active sites and improve the rational design of catalysts. Achieving this level of characterization requires techniques that can correlate catalytic performances to specific surface structures, so as to avoid averaging effects. Tip-enhanced Raman spectroscopy combines scanning probe microscopy with plasmon-enhanced Raman scattering and provides simultaneous topographical and chemical information at the nano/atomic scale from ambient to ultrahigh-vacuum and electrochemical environments. Therefore, it has been used to monitor catalytic reactions and is proposed to correlate the local structure and function of heterogeneous catalysts. Bimetallic catalysts, such as Pd-Au, show superior performance in various catalytic reactions, but it has remained challenging to correlate structure and reactivity because of their structural complexity. Here, we show that TERS can chemically and spatially probe the site-specific chemical (electronic and catalytic) and physical (plasmonic) properties of an atomically well-defined Pd(sub-monolayer)/Au(111) bimetallic model catalyst at 3 nm resolution in real space using phenyl isocyanide as a probe molecule (Fig. 1a). We observe a weakened N≡C bond and enhanced reactivity of phenyl isocyanide adsorbed at the Pd step edge compared with that at the Pd terrace. Density functional theory corroborates these observations by revealing a higher d-band electronic profile for the low-coordinated Pd step edge atoms. The 3 nm spatial resolution we demonstrate here is the result of an enhanced electric field and distinct electronic properties at the step edges.

16.
Anal Chem ; 88(1): 915-21, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26633597

ABSTRACT

Controlling the packing structure and revealing the intermolecular interaction of self-assembled monolayers (SAMs) on solid surfaces are crucial for manipulating its properties. We utilized tip-enhanced Raman spectroscopy (TERS) to address the challenge in probing the subtle change of the intermolecular interaction during the assembly of a pyridine-terminated aromatic thiol on the single crystal Au(111) surface that cannot produce enhanced Raman signal, together with electrochemical methods to study the charge transfer properties of SAM. We observed that the aromatic C═C bond stretching vibration can be a marker to monitor the strength of the intermolecular interaction of SAMs, because this Raman peak is very sensitive to the intermolecular π-π stacking. Our results indicate that the SAM experiences a surface restructuring after the formation of a densely packed monolayer. We propose that the intermolecular electrostatic repulsion governs the restructuring when the packing density is high. The correlated TERS and electrochemical studies also suggest that the intermolecular interaction may have some impact on the charge transfer properties of SAM. This study provides a molecular-level insight into understanding and exploiting the intermolecular interactions toward better control over the assembling process and tuning the electrical properties of aromatic thiols.

17.
J Am Chem Soc ; 137(37): 11928-31, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26351986

ABSTRACT

Interfacial properties are highly important to the performance of some energy-related systems. The in-depth understanding of the interface requires highly sensitive in situ techniques that can provide fingerprint molecular information at nanometer resolution. We developed an electrochemical tip-enhanced Raman spectroscopy (EC-TERS) by introduction of the light horizontally to the EC-STM cell to minimize the optical distortion and to keep the TERS measurement under a well-controlled condition. We obtained potential-dependent EC-TERS from the adsorbed aromatic molecule on a Au(111) surface and observed a substantial change in the molecule configuration with potential as a result of the protonation and deprotonation of the molecule. Such a change was not observable in EC-SERS (surface-enhanced), indicating EC-TERS can more faithfully reflect the fine interfacial structure than EC-SERS. This work will open a new era for using EC-TERS as an important nanospectroscopy tool for the molecular level and nanoscale analysis of some important electrochemical systems including solar cells, lithium ion batteries, fuel cells, and corrosion.

18.
J Am Chem Soc ; 136(47): 16609-17, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25350471

ABSTRACT

Improving electrochemical activity of graphene is crucial for its various applications, which requires delicate control over its geometric and electronic structures. We demonstrate that precise control of the density of vacancy defects, introduced by Ar(+) irradiation, can improve and finely tune the heterogeneous electron transfer (HET) rate of graphene. For reliable comparisons, we made patterns with different defect densities on a same single layer graphene sheet, which allows us to correlate defect density (via Raman spectroscopy) with HET rate (via scanning electrochemical microscopy) of graphene quantitatively, under exactly the same experimental conditions. By balancing the defect induced increase of density of states (DOS) and decrease of conductivity, the optimal HET rate is attained at a moderate defect density, which is in a critical state; that is, the whole graphene sheet becomes electronically activated and, meanwhile, maintains structural integrity. The improved electrochemical activity can be understood by a high DOS near the Fermi level of defective graphene, as revealed by ab initio simulation, which enlarges the overlap between the electronic states of graphene and the redox couple. The results are valuable to promote the performance of graphene-based electrochemical devices. Furthermore, our findings may serve as a guide to tailor the structure and properties of graphene and other ultrathin two-dimensional materials through defect density engineering.

19.
PLoS One ; 9(10): e111218, 2014.
Article in English | MEDLINE | ID: mdl-25356738

ABSTRACT

Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.


Subject(s)
Influenza in Birds/epidemiology , Poultry/virology , Animals , China/epidemiology , Cross-Sectional Studies , Prevalence , Species Specificity
20.
Nano Lett ; 13(2): 486-90, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23278710

ABSTRACT

The growth of bilayer and multilayer graphene on copper foils was studied by isotopic labeling of the methane precursor. Isotope-labeled graphene films were characterized by micro-Raman mapping and time-of-flight secondary ion mass spectrometry. Our investigation shows that during growth at high temperature, the adlayers formed simultaneously and beneath the top, continuous layer of graphene and the Cu substrate. Additionally, the adlayers share the same nucleation center and all adlayers nucleating in one place have the same edge termination. These results suggest that adlayer growth proceeds by catalytic decomposition of methane (or CH(x), x < 4) trapped in a "nano-chemical vapor deposition" chamber between the first layer and the substrate. On the basis of these results, submillimeter bilayer graphene was synthesized by applying a much lower growth rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...