Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 897: 148048, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042212

ABSTRACT

C-reactive protein (CRP) belongs to the short-chain pentraxin family and functions as a soluble pattern recognition molecule (PRM) aiding in host defense against pathogens. In the present study, a CRP gene, designated HoCRP, was cloned from Hexagrammos otakii for the first time. The full length of the HoCRP cDNA sequence is 821 bp, which contains an open reading frame (ORF) of 675 bp encoding a 224 amino acid protein. The deduced protein is predicted to have a theoretical isoelectric point (pI) of 5.30 and a molecular weight of 25.4 kDa. The recombinant HoCRP protein (rHoCRP) was expressed in E. coli to further characterize the functions of HoCRP. Saccharide binding experiments demonstrated that rHoCRP exhibited a high affinity for various pathogen-associated molecular patterns (PAMPs). Furthermore, bacterial binding and agglutination assays indicated that rHoCRP had the capability to recognize a wide spectrum of microorganisms. These findings suggest that HoCRP functions not only as a PRM for binding PAMPs but also as an immune effector molecule. Considering the role CRP plays in the classical complement pathway, the interaction between rHoCRP and rHoC1q was assessed and proven by a Pull-down and Elisa assay, which implied that rHoCRP may be able to activate complement. In addition, phagocytosis enhancement by rHoCRP in the presence or absence of complement components was analysed by flow cytometry. The results showed that rHoCRP could synergistically enhance the phagocytosis of RAW264.7 cells with complement, providing further evidence of complement activation by rHoCRP through the opsonization of specific complement components. In summary, our findings suggest that rHoCRP may play a crucial role in host antibacterial defense by recognizing pathogens, activating the complement system, and enhancing macrophage function.


Subject(s)
C-Reactive Protein , Perciformes , Animals , C-Reactive Protein/genetics , Amino Acid Sequence , Escherichia coli/metabolism , Pathogen-Associated Molecular Pattern Molecules , Recombinant Proteins/metabolism , Phagocytosis , Perciformes/metabolism
3.
Fish Shellfish Immunol ; 140: 108972, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37488038

ABSTRACT

With the tremendous success of the artificial breeding of Hexagrammos otakii, the yield has been substantially improved. However, intensive farming often results in bacterial diseases; hence it is imperative to find new antimicrobial molecules. In the present study, we identified a homologous cDNA fragment of collectin-10 from H. otakii, designated as HoCL-10. The cDNA length is 899 bp, which contains an open reading frame (ORF) of 816 bp encoding a secreted protein with 272 amino acid residues. The peptide of HoCL-10 contains an N-terminal collagen domain, a neck region, and a C-terminal carbohydrate recognition domain. The qRT-PCR results revealed that HoCL-10 mRNA was highest expressed in the liver and skin and was significantly induced post-LPS stimulation. The sugar and bacteria binding assay suggested that the recombinant HoCL-10 (rHoCL-10) could recognize various pathogen-associated molecular patterns (PAMPs) and bacteria. For effect on cells, rHoCL-10 enhanced the phagocytosis and migration ability of the macrophage indicated using pro-phagocytosis assay and trans-well assay. To determine the role of HoCL-10 in the complement system, the interaction between HoCL-10 and mannose-binding lectin associated serine protease 1, 2 (MASP-1, 2) were analyzed and demonstrated using ELISA and Far-western. And in vivo, the concentration of membrane-attack complex (MAC) in fish plasma was significantly down-regulated post-injection with HoCL-10 antibody. Finally, the bacteria challenge experiment was performed, implying that HoCL-10 may assist the host in defending against microbial invasion. The findings suggest that HoCL-10 may play crucial roles in host defense against microorganisms, possibly through opsonizing pathogens and activating the complement system.


Subject(s)
Bacterial Infections , Perciformes , Animals , DNA, Complementary , Bacteria/genetics , Complement Activation , Perciformes/genetics , Complement System Proteins , Carbohydrates , Collectins/genetics
4.
Chin Med ; 17(1): 59, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606807

ABSTRACT

Saponins are found in a variety of higher plants and display a wide range of pharmacological activities, including expectorant, anti-inflammatory, vasoprotective and antimicrobial properties. Pulsatilla chinensis (P. chinensis, Bai Tou Weng, ) has been used medically in China for thousands of years for the treatment of diseases caused by bacteria, and it is rich in triterpenoid saponins. In recent decades, anemoside B4 (Pulchinenoside C) is well studied since it has been used as a quality control marker for P. chinensis. At the same time, more and more other active compounds were found in the genus of Pulsatilla. In this review, we summarize the pharmacological activities of Pulsatilla saponins (PS) and discuss the cellular or molecular mechanisms that mediate their multiple activities, such as inducing cancer cell apoptosis, inhibiting tumor angiogenesis, and protecting organs via anti-inflammatory and antioxidant measures. We aim to provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate further study and drug discovery of PS.

5.
Fish Physiol Biochem ; 47(5): 1369-1382, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34279744

ABSTRACT

Thioredoxins (Trxs) are a family of small and highly conserved proteins which play crucial roles in the maintenance and regulation of the cellular redox homeostasis. In this study, the full-length cDNAs of thioredoxin 1 (TfTrx1) and thioredoxin-related protein of 14 kDa (TfTrp14) were isolated from roughskin sculpin (Trachidermus fasciatus). TfTrx1 is 662 bp in length with a 336-bp open reading frame (ORF) that encodes for a peptide with 111 amino acids, and TfTrp14 consists of 1066 bp with a 372-bp ORF that is translated to 123 amino acids. TfTrx1 and TfTrp14 contain highly conserved catalytic site motif CGPC and CPDC, respectively. Tissue distribution analysis indicated that both genes were broadly expressed in all examined tissues with the highest expression of TfTrx1 in the blood and TfTrp14 in the brain. In post-LPS and heavy metal challenge, the mRNA of both genes was significantly increased in the skin, liver, spleen, and brain at various times. The results of western blot detection displayed that the time of the induced maximum protein expression was 6-h post-LPS injection in the skin and liver, which were slightly delayed compared with that of 2 h at mRNA level. The recombinant TfTrp14 and TfTrx1 proteins were expressed in E. coli BL21 (DE3). The increase of the fluorescence intensity in rTfTrx1 and rTfTrp14 suggested the redox state changes in the microenvironment around tryptophan residues. Both of the recombinant proteins exhibited concentration-dependent disulfide reductase activity towards insulin, and the catalytic activity of rTfTrx1 was much higher than that of rTfTrp14.


Subject(s)
Lipopolysaccharides , Perciformes , Amino Acid Sequence , Amino Acids , Animals , Base Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , Perciformes/genetics , RNA, Messenger , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Dev Comp Immunol ; 123: 104133, 2021 10.
Article in English | MEDLINE | ID: mdl-34000320

ABSTRACT

Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide (LPS) binding proteins (LBP) both play important roles in innate immunity against bacterial infection. Herein, we identified a novel full-length cDNA sequence of BPI/LBP from Trachidermus fasciatus (designated as TfBPI/LBP). The full-length cDNA sequence of TfBPI/LBP was 1594bp, which contains an open reading frame (ORF) of 1422bp encoding a secreted protein with 473 amino acid residues. Similar to BPI/LBPs from other teleost and mammals, the peptide of TfBPI/LBP contains an N-terminal BPI/LBP/CETP domain with an LPS-binding motif and a C-terminal BPI/LBP/CETP domain BPI2. Multiple alignments and phylogenetic analysis supported that TfBPI/LBP was a new member of the vertebrate BPI/LBP family. TfBPI/LBP gene was ubiquitously expressed in all detected tissues, with the most abundant in the liver, and could be significantly induced in the skin, blood, liver, spleen post LPS challenge. The recombinant N-terminal domain of TfBPI/LBP (designated as rTfBPI/LBPN) was successfully expressed in Escherichia coli. Sugar binding assay showed that rTfBPI/LBPN could bind to LPS, peptidoglycan (PGN), and lipoteichoic acid (LTA), with the highest affinity to LPS. The results of bacteria binding and agglutinating assay revealed that rTfBPI/LBPN could bind and agglutinate to all of the 9 kinds of bacteria we used. Moreover, membrane integrity analysis indicated that rTfBPI/LBPN could increase the membrane permeability of bacteria. These results suggested that BPI/LBP may play crucial roles in host defense against microorganisms, possibly through non-selective bacterial recognition and induction of membrane penetration.


Subject(s)
Acute-Phase Proteins/metabolism , Antimicrobial Cationic Peptides/metabolism , Blood Proteins/metabolism , Carrier Proteins/metabolism , Fishes/immunology , Liver/metabolism , Membrane Glycoproteins/metabolism , Acute-Phase Proteins/genetics , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Blood Proteins/genetics , Carrier Proteins/genetics , Cell Membrane Permeability , Cloning, Molecular , Fish Proteins , Gene Expression Regulation , Immunity, Innate , Membrane Glycoproteins/genetics , Phylogeny , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...