Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
J Ethnopharmacol ; 333: 118408, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823659

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM: To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS: The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3ß (GSK-3ß), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) concentrations in brain tissue were assessed by ELISA. RESULTS: Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3ß. By promoting Ser9 phosphorylation and inhibiting GSK-3ß activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1ß levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION: Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3ß inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.

2.
Phys Chem Chem Phys ; 26(24): 17303-17314, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860379

ABSTRACT

Aluminum (Al) possesses high combustion enthalpy and is thus extensively used as the fuel additive in explosives to form aluminized explosives with excellent energy performance. In the energy release process of aluminized explosives, the adsorption of Al surfaces plays an important role in catalyzing the explosive decomposition and triggering the oxidation of themselves. However, it still remains elusive owing to the multiplicity of adsorbed substances. Herein, the adsorption mechanism of decomposition species of CHON-containing explosives on Al surfaces is studied synoptically by combining reactive molecular dynamics simulations with density functional theory calculations. The results indicate that the Al surface structure and the activity of adsorbed molecules both have an impact on adsorption. The cluster surface generally outperforms the slab one in adsorptivity due to the lower coordination number of Al atoms. Meanwhile, the more active adsorbed molecules lead to chemisorption or even dissociative adsorption, beneficial to the subsequent Al oxidation. Besides, electrons will transfer from the Al surface to the adsorbed molecules as chemisorption occurs; while the density of states of the Al surface and molecules are altered, especially for carbon oxides with significant electronic delocalization. This work is expected to deepen insights into the energy release of aluminized explosives and help provide a proposal for enhancing energy release efficiency.

3.
Exp Ther Med ; 28(1): 295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38827477

ABSTRACT

Ammonia (NH3) is an irritating and harmful gas that affects cell apoptosis and autophagy. Sirtuin 5 (SIRT5) has multiple enzymatic activities and regulates NH3-induced autophagy in tumor cells. In order to determine whether SIRT5 regulates NH3-induced bovine mammary epithelial cell apoptosis and autophagy, cells with SIRT5 overexpression or knockdown were generated and in addition, bovine mammary epithelial cells were treated with SIRT5 inhibitors. The results showed that SIRT5 overexpression reduced the content of NH3 and glutamate in cells by inhibiting glutaminase activity in glutamine metabolism, and reduced the ratio of ADP/ATP. The results in the SIRT5 knockdown and inhibitor groups were comparable, including increased content of NH3 and glutamate in cells by activating glutaminase activity, and an elevated ratio of ADP/ATP. It was further confirmed that SIRT5 inhibited the apoptosis and autophagy of bovine mammary epithelial cells through reverse transcription-quantitative PCR, western blot, flow cytometry with Annexin V FITC/PI staining and transmission electron microscopy. In addition, it was also found that the addition of LY294002 or Rapamycin inhibited the PI3K/Akt or mTOR kinase signal, decreasing the apoptosis and autophagy activities of bovine mammary epithelial cells induced by SIRT5-inhibited NH3. In summary, the PI3K/Akt/mTOR signal involved in NH3-induced cell autophagy and apoptosis relies on the regulation of SIRT5. This study provides a new theory for the use of NH3 to regulate bovine mammary epithelial cell apoptosis and autophagy, and provides guidance for improving the health and production performance of dairy cows.

4.
Article in English | MEDLINE | ID: mdl-38870002

ABSTRACT

As a pivotal subfield within the domain of time series forecasting, runoff forecasting plays a crucial role in water resource management and scheduling. Recent advancements in the application of artificial neural networks (ANNs) and attention mechanisms have markedly enhanced the accuracy of runoff forecasting models. This article introduces an innovative hybrid model, ResTCN-DAM, which synergizes the strengths of deep residual network (ResNet), temporal convolutional networks (TCNs), and dual attention mechanisms (DAMs). The proposed ResTCN-DAM is designed to leverage the unique attributes of these three modules: TCN has outstanding capability to process time series data in parallel. By combining with modified ResNet, multiple TCN layers can be densely stacked to capture more hidden information in the temporal dimension. DAM module adeptly captures the interdependencies within both temporal and feature dimensions, adeptly accentuating relevant time steps/features while diminishing less significant ones with minimal computational cost. Furthermore, the snapshot ensemble method is able to obtain the effect of training multiple models through one single training process, which ensures the accuracy and robustness of the forecasts. The deep integration and collaborative cooperation of these modules comprehensively enhance the model's forecasting capability from various perspectives. Ablation studies conducted validate the efficacy of each module, and through multiple sets of comparative experiments, it is shown that the proposed ResTCN-DAM has exceptional and consistent performance across varying lead times. We also employ visualization techniques to display heatmaps of the model's weights, thereby enhancing the interpretability of the model. When compared with the prevailing neural network-based runoff forecasting models, ResTCN-DAM exhibits state-of-the-art accuracy, temporal robustness, and interpretability, positioning it at the forefront of contemporary research.

5.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928802

ABSTRACT

In this work, steam explosion (SE) was applied to prompt the rapid extraction of ergosterol and polysaccharides from Flammulina velutipes root (FVR) waste. Ultrasound-assisted saponification extraction (UASE) followed by water extraction was used to prepare ergosterol and polysaccharides. The results indicated that SE destroyed the complicated structure of FVR and increased its internal porosity and surface roughness. SE caused the thermal degradation of FVR's structural components and increased the polysaccharide content 0.97-fold. As a result, the extraction yield and efficiency of ergosterol and polysaccharides were improved. The theoretical maximum extraction concentration (C∞) and diffusion coefficient (D) were increased by 34.10% and 78.04% (ergosterol) and 27.69% and 48.67% (polysaccharides), respectively. The extraction yields obtained within 20-30 min of extraction time exceeded those of untreated samples extracted after several hours. For polysaccharides, SE led to a significant reduction in the average molecular weight, increased the percentage of uronic acids and decreased the neutral sugar percentage. The monosaccharide composition was changed by SE, with an increase in the molar ratio of glucose of 64.06% and some reductions in those of other monosaccharides. This work provides an effective method for the processing of fungi waste and adds to its economic value, supporting its high-value utilization in healthcare products.

6.
Gels ; 10(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38920925

ABSTRACT

Given the increasingly severe environmental problems caused by water pollution, the degradation of organic dyes can be effectively achieved through the utilization of photocatalysis. In this work, metal alkoxides and a combination of alcohol/hydrophobic solvents are employed to prepare BaTiO3 aerogels via a liquid-phase and template-free synthetic route. The preparation process of the aerogels solely entails facile agitation and supercritical drying, eliminating the need for additional heat treatment. The binary solvent of ethanol and toluene is identified as the optimal choice, resulting in a significantly enhanced surface area (up to 223 m2/g) and an abundant pore structure of BaTiO3 aerogels compared to that of the BaTiO3 nanoparticles. Thus, the removal efficiency of the BaTiO3 aerogel sample for MO is nearly twice as high as that of the BaTiO3 nanoparticles sample. Noble metal Ag nanoparticles' deposition onto the BaTiO3 aerogel surface is further achieved via the photochemical deposition method, which enhances the capture of photogenerated electrons, thereby ensuring an elevated level of photocatalytic efficiency. As a result, Ag nanoparticles deposited on BaTiO3 aerogel can degrade MO completely after 40 min of illumination, while the corresponding aerogel before modification can only remove 80% of MO after 60 min. The present work not only complements the preparatory investigation of intricate aerogels but also offers a fresh perspective for the development of diverse perovskite aerogels with broad applications.

7.
Heliyon ; 10(10): e31002, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803916

ABSTRACT

Protection of the structural and functional integrity of the blood-brain barrier (BBB) is crucial for treating ischemic stroke (IS). Hydroxysafflor yellow A (HSYA) and quercetin (Quer), two main active components in the edible and medicinal plant Carthamus tinctorius L., have been reported to exhibit neuroprotective effects. We investigated the anti-IS and BBB-protective properties of HSYA and Quer and the underlying mechanisms. They decreased neurological deficits in middle cerebral artery occlusion (MCAO) mice, while their combination showed better effects. Importantly, HSYA and Quer ameliorated BBB permeability. Their effects on reduction of both EB leakage and infarct volume were similar, which may contribute to improved locomotor activities. Moreover, HSYA and Quer showed protective effects for hCMEC/D3 monolayer against oxygen-glucose deprivation. Src, p-Src, MMP-9, and P-gp were associated with ingredients treatments. Furthermore, molecular docking and molecular dynamics simulations revealed stable and tight binding modes of ingredients with Src and P-gp. The current study supports the potential role of HSYA, Quer, and their combination in the treatment of IS by regulating BBB integrity.

8.
Int J Biol Macromol ; 271(Pt 1): 132605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788869

ABSTRACT

Natural preservatives such as cinnamaldehyde (CIN) are garnering increasing interest to replace their synthetic counterparts in maintaining fruit freshness and safety. However, their long-term effectiveness and widespread application have been greatly limited due to high volatility and potent aroma. To address these challenges, we developed a viable and simple strategy to prepare a multifunctional active coating for fruit preservation by incorporating host-guest inclusion complex of CIN and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) CIN@HP-ß-CD into hyaluronic acid (HA), a natural polysaccharide with exceptional film-forming properties. The as-prepared HA/CIN@HP-ß-CD coatings exhibited universal surface affinity, excellent antimicrobial performance, and satisfactory antioxidant properties with no potential toxicity. Release kinetic studies have demonstrated that CIN in the coating is continuously and slowly released. Furthermore, freshness preservation experiments on bananas and fresh-cut apples demonstrated that the developed coating is effective in preserving the color of fruit, decreasing the weight loss rate, preventing the microorganism's growth, and significantly extending the period of freshness, exhibiting the potential for application in fruit preservation.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Acrolein , Food Preservation , Fruit , Hyaluronic Acid , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fruit/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Food Preservation/methods , Hyaluronic Acid/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology
9.
Environ Sci Pollut Res Int ; 31(25): 37848-37861, 2024 May.
Article in English | MEDLINE | ID: mdl-38795294

ABSTRACT

Arsenic (As) is one extremely hazardous and carcinogenic metalloid element. Due to mining, metal smelting, and other human activities, the pollution of water (especially groundwater) and soil caused by As is increasingly serious, which badly threatens the environment and human health. In this study, a zeolite imidazolate framework (ZIF-8) was synthesized at room temperature and employed as an adsorbent to facilitate the adsorption of As(III) and As(V) from the solution. The successful synthesis of ZIF-8 was demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) revealed that its particle size was approximately 80 nm. The adsorption kinetics, adsorption isotherm, solution pH, dose, coexisting ions, and the synonymous elements antimony (Sb) were conducted to study the adsorption of As by ZIF-8 nanoparticles. The maximum saturation adsorption capacity was determined to be 101.47 mg/g and 81.40 mg/g for As(III), and As(V) at initial pH = 7.0, respectively. Apparently, ZIF-8 had a good removal effect on As, and it still maintained a good performance after four cycles. The coexisting ions PO43- and CO32- inhibited the adsorption of both As(III) and As(V). ZIF-8 performed well in removing both As and Sb simultaneously, although the presence of Sb hindered the adsorption of both As(III) and As(V). Both FTIR and XPS indicated the adsorption mechanism of As on ZIF-8: ZIF-8 generates a large amount of Zn-OH on the surface through hydrolysis and partial fracture of Zn-N, both of which form surface complexes with As.


Subject(s)
Arsenic , Water Pollutants, Chemical , Zeolites , Adsorption , Zeolites/chemistry , Arsenic/chemistry , Water Pollutants, Chemical/chemistry , Imidazoles/chemistry , Kinetics , Water Purification/methods , X-Ray Diffraction , Hydrogen-Ion Concentration
10.
Plant Dis ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803070

ABSTRACT

Polygonatum kingianum is a Chinese herbal medicine that belongs to the genus Polygonatum of the family Liliaceae. In June 2023, Polygonatum kingianum Coll. et Hemsl. in nurseries in Qujing, Yunnan Province, China, showed irregular brown spots on the leaves, whole leaf necrosis, and plant death in serious cases, with an incidence of 10-20% (Fig. S1). To identify the pathogens of P. kingianum, six diseased samples were collected from nurseries with 0.6 acre. These diseased sample leaves were soaked in 0.1% HgCl2 for 1 min and 75% ethanol for 2 min and then rinsed thrice with sterile water. Treated leaves were cut into small pieces (5×5 mm) and cultured on potato dextrose agar (PDA) for five days at 28°C. Total thirteen fungal strains were isolated from PDA medium. The nuclear ribosomal internal transcribed spacer of ribosomal DNA (ITS rDNA) region of these 13 strains was amplified by polymerase chain reaction (PCR) using universal primers ITSI/ITS4 (White et al. 1990). Sequencing and BLAST of the ITS region on NCBI showed that 11 out of 13 fungal strains belonged to the genus Alternaria, with an identity ≥99%. We selected one of the Alternaria strains, HJ-A1, for further study. The HJ-A1 colony appeared grayish brown white-to-gray with a flocculent texture on the front side and a dark gray underside on the PDA medium (Fig. S1). The conidiophores appeared brown, either single or branched, and produced numerous short conidial chains. The conidia were obclavate to obpyriform or ellipsoid in shape and contained 1-4 transverse septa and 0-2 oblique septa. The conidial diameter was 27.30µm in length and 12.27µm in width. (Fig. S1). To further determine the species of HJA1, the genomic DNA of HJ-A1 was extracted using the Lysis Buffer for PCR (AG, Hunan, China). Four Alternaria genomic DNA regions including the ITS, translation elongation factor 1-α gene (TEF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Alternaria major allergen gene (Alt a1) were amplified by PCR using the primers as previously reported (Woudenberg et al. 2013, Hong et al. 2005). Sequence analysis revealed that the ITS (484bp) of HJ-A1 (NCBI No. PP082633), TEF1-α (267bp) of HJ-A1 (NCBI No. PP419893), GAPDH (582bp) of HJ-A1 (NCBI No. PP419892), and Alt a1 (522bp) of HJ-A1 (NCBI No. PP228046) shared the highest identity with A. alternata respectively (99≥%). A maximum likelihood phylogenetic tree was constructed with the combined sequence data sets of ITS, GAPDH, TEF, and Alt a1 using MEGA 7. The results showed that HJ-A1 strain clustered with A. alternate (Fig. S2). The pathogenicity of HJ-A1 was tested according to Koch's postulates by inoculating HJ-A1 conidia suspension (2×105 conidia/mL) into leaves of 1-year-old P. kingianum, with sterile water as a control. Each treatment group included 3 plants with 3 replicates. The tested plants were planted in a phytotron at 28℃ and 90% humidity. Three days after inoculation, symptoms similar to those under natural conditions were observed in the HJ-A1-inoculated plants, whereas no symptoms were observed in the control plants (Fig. S1). The same fungal strains were re-isolated from inoculated leaves and identified by morphologically and sequence of ITS. Previous studies showed that Alternaria alternata funji cause many plant diseases, such as fig fruit rot (Latinovic N et al. 2014),daylily leaf spot (Huang D et al. 2022), fruit blight on sesame (Cheng H et al. 2021),leaf spot of Cynanchum atratum Bunge (Sun H et al. 2021) and so on. To our knowledge, this is the first report of A. alternata causing P. kingianum leaf spot in China. The discovery of this pathogen will help to guide the protection and control of P. kingianum disease.

11.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557068

ABSTRACT

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Subject(s)
Alkaloids , Quinolizidines , Sophora , Tobacco Mosaic Virus , Antifungal Agents , Sophora/chemistry , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Seeds/chemistry
12.
J Control Release ; 370: 140-151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653347

ABSTRACT

The spontaneous healing of critical-sized bone defects is often limited, posing an increased risk of complications and suboptimal outcomes. Osteogenesis, a complex process central to bone formation, relies significantly on the pivotal role of osteoblasts. Despite the well-established osteogenic properties of vitamin D3 (VD3), its lipophilic nature confines administration to oral or muscle injection routes. Therefore, a strategic therapeutic approach involves designing a multifunctional carrier to enhance efficacy, potentially incorporating it into the delivery system. Here, we introduce an innovative sterosome-based delivery system, utilizing palmitic acid (PA) and VD3, aimed at promoting osteogenic differentiation and facilitating post-defect bone regeneration. The delivery system exhibited robust physical characteristics, including excellent stability, loading efficiency, sustained drug release and high cellular uptake efficiency. Furthermore, comprehensive investigations demonstrated outstanding biocompatibility and osteogenic potential in both 2D and 3D in vitro settings. A critical-sized calvarial defect model in mice recapitulated the notable osteogenic effects of the sterosomes in vivo. Collectively, our research proposes a clinically applicable strategy for bone healing, leveraging PA/VD3 sterosomes as an efficient carrier to deliver VD3 and enhance bone regenerative effects.


Subject(s)
Bone Regeneration , Cholecalciferol , Osteogenesis , Animals , Bone Regeneration/drug effects , Cholecalciferol/administration & dosage , Osteogenesis/drug effects , Drug Liberation , Palmitic Acid/chemistry , Skull/drug effects , Mice , Drug Delivery Systems , Male , Humans , Cell Differentiation/drug effects , Drug Carriers/chemistry , Mice, Inbred C57BL , Osteoblasts/drug effects
13.
Int J Biol Macromol ; 265(Pt 1): 130680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462121

ABSTRACT

The catechol moiety found within mussel proteins plays a pivotal role in enhancing their adhesive properties. Nonetheless, catechol compounds, such as dopamine (DOP) derivatives, are susceptible to oxidation, leading to the formation of quinone. This oxidation process poses a significant challenge in the development of DOP-based hydrogels, hampering their adhesion capabilities and hindering polymerization. To protect DOP moieties from oxidation, DOP and N-(3-aminopropyl)methacrylamide (AMA) moieties were grafted onto the side groups of biocompatible poly(glutamic acid) (PGA). Subsequently, the DOP unit, serving as a second guest, would be captured by a polymerizable rotaxane of cucurbituril (CB[n]), in which the host molecule CB[8] complexed with the first guest, polymerizable methyl viologen (MV), forming a protective function and dynamic cross-linking. Upon exposure to light curing, a composite network emerged through the synergy of covalent cross-linking and supramolecular host-guest complexation of DOP with CB[8]. The generated complexation between DOP and CB[8] could protect the DOP moieties, resulting in photocured hydrogels with exceptional adhesive strength and remarkable tensile capabilities. Moreover, 3D printing technology was used to create various models with these DOP-based hydrogels, demonstrating their promising applications in future.


Subject(s)
Macrocyclic Compounds , Rotaxanes , Hydrogels , Dopamine , Adhesives
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474317

ABSTRACT

The BRI1 EMS suppressor 1(BES1) transcription factor is a crucial regulator in the signaling pathway of Brassinosteroid (BR) and plays an important role in plant growth and response to abiotic stress. Although the identification and functional validation of BES1 genes have been extensively explored in various plant species, the understanding of their role in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. In this study, we identified nine members of the BES1 gene family in the genome of P. bournei; these nine members were unevenly distributed across four chromosomes. In our further evolutionary analysis of PbBES1, we discovered that PbBES1 can be divided into three subfamilies (Class I, Class II, and Class IV) based on the evolutionary tree constructed with Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum. Each subfamily contains 2-5 PbBES1 genes. There were nine pairs of homologous BES1 genes in the synteny analysis of PbBES1 and AtBES1. Three segmental replication events and one pair of tandem duplication events were present among the PbBES1 family members. Additionally, we conducted promoter cis-acting element analysis and discovered that PbBES1 contains binding sites for plant growth and development, cell cycle regulation, and response to abiotic stress. PbBES1.2 is highly expressed in root bark, stem bark, root xylem, and stem xylem. PbBES1.3 was expressed in five tissues. Moreover, we examined the expression profiles of five representative PbBES1 genes under heat and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. This study provides important clues to elucidate the functional characteristics of the BES1 gene family, and at the same time provides new insights and valuable information for the regulation of resistance in P. bournei.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassinosteroids/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Multigene Family , DNA-Binding Proteins/metabolism
15.
Am J Pathol ; 194(7): 1185-1196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38548270

ABSTRACT

Acute lung injury (ALI) is a devastating clinical syndrome caused by different factors, with high morbidity and mortality. Lung injury and inflammation caused by lipopolysaccharide (LPS) can be modulated by NLRP3 inflammasome activation, yet its exact function within the airway epithelium is still unknown. Meanwhile, glucose transporter protein 1 (GLUT1) contributes to a number of inflammatory illnesses, including ALI. The present study aimed to assess GLUT1's function in NLRP3 inflammasome activation of airway epithelium in LPS-induced acute lung injury. BALB/c mice and BEAS-2B cells were exposed to LPS (5 mg/kg and 200 µg/mL, respectively), with or without GLUT1 antagonists (WZB117 or BAY876). LPS up-regulated pulmonary expression of NLRP3 and GLUT1 in mice, which could be blocked by WZB117 or BAY876. Pharmacological inhibition of GLUT1 in vivo significantly attenuated lung tissue damage, neutrophil accumulation, and proinflammatory factors release (TNF-α, IL-6, and IL-1ß) in LPS-exposed mice. Meanwhile, the activation markers of NLRP3 inflammasome (ASC, caspase-1, IL-1ß, and IL-18) induced by LPS were also suppressed. In cultured BEAS-2B cells, LPS induced an increase in GLUT1 expression and triggered activation of the NLRP3 inflammasome, both of which were inhibited by GLUT1 antagonists. These results illustrate that GLUT1 participates in LPS-induced ALI and promotes the activation of the NLRP3 inflammasome in airway epithelial cells.


Subject(s)
Acute Lung Injury , Glucose Transporter Type 1 , Inflammasomes , Lipopolysaccharides , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Inflammasomes/metabolism , Mice , Glucose Transporter Type 1/metabolism , Humans , Male , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
16.
Opt Express ; 32(4): 4857-4875, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439227

ABSTRACT

High dynamic range 3D measurement technology, utilizing multiple exposures, is pivotal in industrial metrology. However, selecting the optimal exposure sequence to balance measurement efficiency and quality remains challenging. This study reinterprets this challenge as a Markov decision problem and presents an innovative exposure selection method rooted in deep reinforcement learning. Our approach's foundation is the exposure image prediction network (EIPN), designed to predict images under specific exposures, thereby simulating a virtual environment. Concurrently, we establish a reward function that amalgamates considerations of exposure number, exposure time, coverage, and accuracy, providing a comprehensive task definition and precise feedback. Building upon these foundational elements, the exposure selection network (ESN) emerges as the centerpiece of our strategy, acting decisively as an agent to derive the optimal exposure sequence selection. Experiments prove that the proposed method can obtain similar coverage (0.997 vs. 1) and precision (0.0263 mm vs. 0.0230 mm) with fewer exposures (generally 4) compared to the results of 20 exposures.

17.
J Agric Food Chem ; 72(9): 5047-5061, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38394631

ABSTRACT

As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 µg/mL, which was better than that of the positive control, ningnanmycin (86.03 µg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 µg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 µg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.


Subject(s)
Fabaceae , Fungicides, Industrial , Insecticides , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Quinolizidine Alkaloids , Insecticides/pharmacology , Insecticides/chemistry , Antiviral Agents/pharmacology , Structure-Activity Relationship
18.
Sci Adv ; 10(8): eadh0911, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394196

ABSTRACT

Photosystem II (PSII) is an integral part of the photosynthesis machinery, in which several light-harvesting complexes rely on inter-complex excitonic energy transfer (EET) processes to channel energy to the reaction center. In this paper, we report on a direct observation of the inter-complex EET in a minimal PSII supercomplex from plants, containing the trimeric light-harvesting complex II (LHCII), the monomeric light-harvesting complex CP26, and the monomeric PSII core complex. Using two-dimensional (2D) electronic spectroscopy, we measure an inter-complex EET timescale of 50 picoseconds for excitations from the LHCII-CP26 peripheral antenna to the PSII core. The 2D electronic spectra also reveal that the transfer timescale is nearly constant over the pump spectrum of 600 to 700 nanometers. Structure-based calculations reveal the contribution of each antenna complex to the measured inter-complex EET time. These results provide a step in elucidating the full inter-complex energy transfer network of the PSII machinery.


Subject(s)
Chlorophyll , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Chlorophyll/metabolism , Photosynthesis , Thylakoids/metabolism , Plants/metabolism , Energy Transfer
20.
Exp Ther Med ; 27(3): 123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410190

ABSTRACT

As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...