Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Cancer ; 15(6): 1657-1667, 2024.
Article in English | MEDLINE | ID: mdl-38370384

ABSTRACT

Colorectal cancer (CRC) is the leading cause of cancer death, but little is known about its etiopathology. Aldo-keto reductase 1B10 (AKR1B10) protein is primarily expressed in intestinal epithelial cells, but lost in colorectal cancer tissues. This study revealed that AKR1B10 may not be a prognostic but an etiological factor in colorectal tumorigenesis. Using a tissue microarray, we investigated the expression of AKR1B10 in tumor tissues of 592 colorectal cancer patients with a mean follow-up of 25 years. Results exhibited that AKR1B10 protein was undetectable in 374 (63.13%), weakly positive in 146 (24.66%), and positive 72 (12.16%) of 592 tumor tissues. Kaplan-Meier analysis showed that AKR1B10 expression was not correlated with overall survival or disease-free survival. Similar results were obtained in various survival analyses stratified by clinicopathological parameters. AKR1B10 was not correlated with tumor T-pathology, N-pathology, TNM stages, cell differentiation and lymph node/regional/distant metastasis either. However, AKR1B10 silencing in culture cells enhanced carbonyl induced protein and DNA damage; and in ulcerative colitis tissues, AKR1B10 deficiency was associated acrolein-protein lesions. Together this study suggests that AKR1B10 downregulation may not be a prognostic but a carcinogenic factor of colorectal cancer.

2.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38345936

ABSTRACT

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Subject(s)
Oryza , Rhizome , Transcriptome , Rhizome/genetics , Rhizome/growth & development , Rhizome/metabolism , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Genome, Plant/genetics
3.
J Am Heart Assoc ; 12(17): e029817, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37655472

ABSTRACT

Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization-related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood-brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood-brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA-treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand-alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hypothermia , Ischemic Stroke , Stroke , Animals , Rats , Tissue Plasminogen Activator , Ischemic Stroke/drug therapy , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/prevention & control , Inflammation , Thrombolytic Therapy
4.
J Stroke Cerebrovasc Dis ; 32(11): 107347, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716103

ABSTRACT

OBJECTIVES: This study was designed to investigate metabolic biomarker changes and related metabolic pathways of Butylphthalide (NBP) on cerebral ischemia/reperfusion. METHODS: In this study, a mouse cerebral ischemia/reperfusion (I/R) model was prepared using the middle cerebral artery occlusion method, and neurobehavioral score and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining experiments were used to confirm the obvious NBP anti-cerebral ischemia effect. The protective effect of NBP in the mouse cerebral I/R model and its metabolic pathway and mechanism were investigated using mouse blood samples. RESULTS: The metabolic profiles of mice in the I/R+NBP, I/R, and sham groups were significantly different. Under the condition that I/R vs. sham was downregulated and I/R + NBP vs. I/R was upregulated, 88 differential metabolites, including estradiol, ubiquinone-2, 2-oxoarginine, and L-histidine trimethylbetaine, were screened and identified. The related metabolic pathways involved arginine and proline metabolism, oxidative phosphorylation, ubiquitin and other terpenoid-quinone biosynthesis, and estrogen signaling. CONCLUSIONS: Metabolomics was used to elucidate the NBP mechanism in cerebral ischemia treatment in mice, revealing synergistic NBP pharmacological characteristics with multiple targets.

5.
Int Immunopharmacol ; 119: 110271, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37172424

ABSTRACT

Chronic cerebral hypoperfusion (CCH) can cause cognitive impairments. Dl-3-n-butylphthalide (NBP) is widely used in neurological disorders; but, the role of NBP in CCH remains unclear. This study aimed to investigate the potential mechanism of NBP on CCH through untargeted metabolomics. Animals were divided into CCH, Sham, and NBP groups. A rat model of bilateral carotid artery ligation was used to simulate CCH. Cognitive function of the rats was assessed using the Morris water maze test. Additionally, we used LC-MS/MS to detect ionic intensities of metabolites between the three groups for off-target metabolism analysis and to screen for differential metabolites. The analysis showed an improvement in cognitive function in rats after NBP treatment. Moreover, metabolomic studies showed that the serum metabolic profiles of the Sham and CCH groups were significantly altered, and 33 metabolites were identified as potential biomarkers associated with the effects of NBP. These metabolites were enriched in 24 metabolic pathways.And the pathway of differential metabolite enrichment was further verified by immunofluorescence. Thus, the study provides a theoretical basis for the pathogenesis of CCH and the treatment of CCH by NBP, and supports a wider application of NBP drugs.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Neuroprotective Agents , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Chromatography, Liquid , Tandem Mass Spectrometry , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Brain Ischemia/metabolism , Metabolomics
7.
Transl Stroke Res ; 14(6): 803-805, 2023 12.
Article in English | MEDLINE | ID: mdl-35691985

ABSTRACT

Ischemic stroke is one of the leading causes of mortality and disability worldwide. Currently, options for ischemic stroke clinical therapy remain limited to intravenous thrombolysis and thrombectomy, which can only be applied to a minority of patients due to narrow therapeutic time window. Therefore, the discovery of new therapeutic targets and biomarkers is of great significance for ischemic stroke therapy. Long non-coding RNAs (lncRNAs) are the most extensive ncRNA transcripts and play critical roles in different kinds of diseases. Accumulative evidence suggests that lncRNAs are widely involved in multiple pathophysiological processes of ischemic stroke, highlighting their potential role as ischemic stroke therapeutic targets. Moreover, the significantly altered expression of lncRNAs in circulation of ischemic stroke patients reveals that they may serve as diagnostic, therapeutic, and prognosis biomarkers for ischemic stroke. In this commentary, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities of lncRNAs in the diagnosis and treatment of ischemic stroke. In addition, the challenges for the clinical translation of lncRNAs in ischemic stroke are also discussed.


Subject(s)
Ischemic Stroke , RNA, Long Noncoding , Stroke , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stroke/diagnosis , Stroke/genetics , Stroke/therapy , Ischemic Stroke/diagnosis , Ischemic Stroke/genetics , Biomarkers/metabolism
8.
Front Pharmacol ; 13: 1003806, 2022.
Article in English | MEDLINE | ID: mdl-36278201

ABSTRACT

There's no evidence demonstrating the association between noncoding RNAs levels before IV recombinant tissue plasminogen activator (rtPA) administration and the outcomes of acute ischemic stroke (AIS). 145 AIS patients received rtPA treatment were recruited at the stroke center from 2018 to 2019, and 103 patients were included in this study. A panel of noncoding RNAs (miRNA-23a, miRNA-193a, miRNA-128, miRNA-99a, miRNA-let-7a, miRNA-494, miRNA-424, and lncRNA H19) were measured in the circulating neutrophils of AIS patients before rtPA treatment. Endpoints included excellent outcome (modified Rankin Scale score [mRS] 0-1) or poor outcome (mRS > 1) at 3 months and symptomatic intracerebral hemorrhage (sICH) after rtPA treatment. Among the eight noncoding RNAs detected in circulating neutrophils of the 103 participants, miRNA-23a levels were associated with the stroke severity on admission and symptom progression at 24 h after rtPA treatment. A noncoding RNA score composed of miRNA-23a, miRNA-99a, and lncRNA H19 was screened to predict the functional outcome at 3 months and the incidence of sICH after rtPA treatment. In the logistic regression analysis, the noncoding RNA score ≥ -0.336 (OR = 2.862 [1.029-7.958], p = 0.044) was an independent predictor of the poor outcome at 3 months after adjustment of clinical variables, the addition of the noncoding RNA score to the clinical model improved the discrimination (IDI% = 4.68 [0.65-8.71], p = 0.020), as well as the net reclassification (NRI% = 33.04 [0.54-71.49], p = 0.016). The noncoding RNA score ≥ -0.336 (OR = 5.250 [1.096-25.135], p = 0.038) was also independently predicted the sICH, the addition of the noncoding RNA score to the clinical variables improved discrimination and reclassification as well. The noncoding RNA score was also associated with the infarct volume and symptom improvement at 7 days after rtPA treatment. In conclusion, a higher neutrophilic noncoding RNA score provides predictive value to identify AIS patients with worse outcomes after rtPA treatment. miRNA-23a, miRNA-99a, and lncRNA H19 are worth further investigation for their effects in thrombolysis after AIS.

9.
Front Pharmacol ; 13: 949290, 2022.
Article in English | MEDLINE | ID: mdl-35910391

ABSTRACT

Purpose: We aimed to examine the prognostic value of syndecan-1 as a marker of glycocalyx injury in patients with acute ischemic stroke (AIS) receiving rt-PA intravenous thrombolysis. Methods: The study included 108 patients with AIS treated with rt-PA intravenous thrombolysis and 47 healthy controls. Patients were divided into unfavorable and favorable prognosis groups based on modified Rankin Scale scores. Univariate and multivariate logistic regression analyses were used to determine risk factors affecting prognosis. Risk prediction models presented as nomograms. The predictive accuracy and clinical value of the new model were also evaluated. Results: Plasma levels of syndecan-1 were significantly higher in patients with AIS than in controls (p < 0.05). Univariate analysis indicated that higher levels of syndecan-1 were more frequent in patients with poor prognosis than in those with good prognosis (t = -4.273, p < 0.001). Syndecan-1 alone and in combination with other factors predicted patient outcomes. After adjusting for confounding factors, syndecan-1 levels remained associated with poor prognosis [odds ratio, 1.024; 95% confidence interval (CI), 1.010-1.038]. The risk model exhibited a good fit, with an area under the receiver operating characteristic curve of 0.935 (95% CI, 0.888-0.981). The categorical net reclassification index (NRI) and continuous NRI values were >0. The integrated discrimination improvement value was 0.111 (95% CI, 0.049-0.174, p < 0.001). Decision curve analysis indicated that the model incorporating syndecan-1 levels was more clinically valuable than the conventional model. Conclusion: Plasma syndecan-1 levels represent a potential marker of prognosis of AIS following intravenous thrombolysis. Adding syndecan-1 to the conventional model may improve risk stratification.

10.
New Phytol ; 235(4): 1486-1500, 2022 08.
Article in English | MEDLINE | ID: mdl-35510797

ABSTRACT

Protein sorting is an essential biological process in all organisms. Trafficking membrane proteins generally relies on the sorting machinery of the Golgi apparatus. However, many proteins have been found to be delivered to target locations via Golgi-independent pathways, but the mechanisms underlying this delivery system remain unknown. Here, we report that Sec24C mediates the direct secretory trafficking of the phytochelatin transporters ABCC1 and ABCC2 from the endoplasmic reticulum (ER) to prevacuolar compartments (PVCs) in Arabidopsis thaliana. Genetic analysis showed that the sec24c mutants are hypersensitive to cadmium (Cd) and arsenic (As) treatments due to mislocalisation of ABCC1 and ABCC2, which results in defects in the vacuole compartmentalisation of the toxic metals. Furthermore, we found that Sec24C recognises ABCC1 and ABCC2 through direct interactions to mediate their exit from the ER to PVCs, which is independent of brefeldin A-sensitive post-Golgi trafficking pathway. These findings expand our understanding of Golgi-independent trafficking, which also provide key insights regarding the mechanism of tonoplast protein sorting and open a new perspective on the function of Sec24 proteins.


Subject(s)
Arabidopsis , Biological Phenomena , Arabidopsis/genetics , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport , Vacuoles/metabolism
11.
Mol Plant ; 15(1): 167-178, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34530166

ABSTRACT

Nitrogen is an essential nutrient for plant growth and development, and plays vital roles in crop yield. Assimilation of nitrogen is thus fine-tuned in response to heterogeneous environments. However, the regulatory mechanism underlying this essential process remains largely unknown. Here, we report that a zinc-finger transcription factor, drought and salt tolerance (DST), controls nitrate assimilation in rice by regulating the expression of OsNR1.2. We found that loss of function of DST results in a significant decrease of nitrogen use efficiency (NUE) in the presence of nitrate. Further study revealed that DST is required for full nitrate reductase activity in rice and directly regulates the expression of OsNR1.2, a gene showing sequence similarity to nitrate reductase. Reverse genetics and biochemistry studies revealed that OsNR1.2 encodes an NADH-dependent nitrate reductase that is required for high NUE of rice. Interestingly, the DST-OsNR1.2 regulatory module is involved in the suppression of nitrate assimilation under drought stress, which contributes to drought tolerance. Considering the negative role of DST in stomata closure, as revealed previously, the positive role of DST in nitrogen assimilation suggests a mechanism coupling nitrogen metabolism and stomata movement. The discovery of this coupling mechanism will aid the engineering of drought-tolerant crops with high NUE in the future.


Subject(s)
Adaptation, Physiological/genetics , Droughts , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Nitrogen/metabolism , Oryza/growth & development , Oryza/genetics , Oryza/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Salt Tolerance/genetics , Transcription Factors/drug effects , Zinc Fingers/drug effects
12.
Biomed Pharmacother ; 145: 112453, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34808554

ABSTRACT

BACKGROUND: While the number of cases of vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has been increasing every year, there are currently no clinically effective treatment methods. At present, Xi-Xian-Tong-Shuan capsule is predominantly used in patients with acute cerebral ischemia; however, its protective effect on CCH has rarely been reported. OBJECTIVE: To explore the underlying mechanisms by which Xi-Xian-Tong-Shuan capsule alleviates cognitive impairment caused by CCH. METHODS: A model of CCH was established in specific-pathogen-free (SPF)-grade male Sprague-Dawley (SD) rats using bilateral common carotid artery occlusion (BCCAO). Xi-Xian-Tong-Shuan capsules were intragastrically administered for 42 days after the BCCAO surgery. We then assessed for changes in cognitive function, expression levels of pro-inflammatory factors, and coagulation function as well as for the presence of white matter lesions and neuronal loss. One-way ANOVA and Tukey's test were used to analyze the experimental data. RESULTS: The rats showed significant cognitive dysfunction after the BCCAO surgery along with white matter lesions, a loss of neurons, and elevated levels of inflammatory factors, all of which were significantly reversed after intervention with Xi-Xian-Tong-Shuan capsules. CONCLUSION: Xi-Xian-Tong-Shuan capsules can ameliorate vascular cognitive impairment in CCH rats by preventing damage of white matter, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Our study provides a new reference for the clinical treatment of chronic cerebral ischemia with Xi-Xian-Tong-Shuan capsules.


Subject(s)
Behavior, Animal/drug effects , Brain Ischemia , Cerebrovascular Circulation/drug effects , Cognitive Dysfunction , Drugs, Chinese Herbal/pharmacology , Inflammation , Animals , Brain Ischemia/drug therapy , Brain Ischemia/immunology , Brain Ischemia/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interferon-gamma/metabolism , Neurons/drug effects , Neurons/metabolism , Plants, Medicinal , Protective Agents , Rats , Rats, Sprague-Dawley
13.
Neurochem Int ; 148: 105072, 2021 09.
Article in English | MEDLINE | ID: mdl-34058282

ABSTRACT

Central nervous system (CNS) disorders are some of the most complex and challenging diseases because of the intricate structure and functions of the CNS. Long non-coding RNA (LncRNA) H19, which had been mistaken for "transcription noise" previously, has now been found to be closely related to the development and homeostasis of the CNS. Several recent studies indicate that it plays an important role in the pathogenesis, treatment, and even prognosis of CNS disorders. LncRNA H19 is correlated with susceptibility to various CNS disorders such as intracranial aneurysms, ischemic stroke, glioma, and neuroblastoma. Moreover, it participates in the pathogenesis of CNS disorders by regulating transcription, translation, and signaling pathways, suggesting that it is a promising biomarker and therapeutic target for these disorders. This article reviews the functions and mechanisms of lncRNA H19 in various CNS disorders, including cerebral ischemia, cerebral hemorrhage, glioma, pituitary adenoma, neuroblastoma, Parkinson's disease, Alzheimer's disease, traumatic spinal cord injury, neuropathic pain, and temporal lobe epilepsy, to provide a theoretical basis for further research on the role of lncRNA H19 in CNS disorders.


Subject(s)
Central Nervous System Diseases/genetics , RNA, Long Noncoding/genetics , Animals , Biomarkers , Central Nervous System Diseases/physiopathology , Humans , RNA, Long Noncoding/drug effects , RNA, Long Noncoding/physiology
14.
CNS Neurosci Ther ; 27(1): 26-35, 2021 01.
Article in English | MEDLINE | ID: mdl-33377610

ABSTRACT

The blood-brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood-brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood-brain barrier, damage to glycocalyx can lead to the dysfunction of the blood-brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood-brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx-dependent blood-brain barrier function.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Capillary Permeability/physiology , Endothelium, Vascular/metabolism , Glycocalyx/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Endothelium, Vascular/cytology , Humans
15.
Plant J ; 105(6): 1689-1702, 2021 03.
Article in English | MEDLINE | ID: mdl-33354819

ABSTRACT

Adventitious roots (ARs) are an important root type for plants and display a high phenotypic plasticity in response to different environmental stimuli. Previous studies found that dark-light transition can trigger AR formation from the hypocotyl of etiolated Arabidopsis thaliana, which was used as a model for the identification of regulators of AR biogenesis. However, the central regulatory machinery for darkness-induced hypocotyl AR (HAR) remains elusive. Here, we report that photoreceptors suppress HAR biogenesis through regulating the molecular module essential for lateral roots. We found that hypocotyls embedded in soil or in continuous darkness are able to develop HARs, wherein photoreceptors act as negative regulators. Distinct from wound-induced ARs that require WOX11 and WOX12, darkness-induced HARs are fully dependent on ARF7, ARF19, WOX5/7, and LBD16. Further studies established that PHYB interacts with IAA14, ARF7, and ARF9. The interactions stabilize IAA14 and inhibit the transcriptional activities of ARF7 and ARF19 and thus suppress biogenesis of darkness-induced HARs. This finding not only revealed the central machinery controlling HAR biogenesis but also illustrated that AR formation could be initiated by multiple pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Hypocotyl/growth & development , Hypocotyl/metabolism , Phytochrome B/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Darkness , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Signal Transduction , Transcription Factors/genetics
16.
Neural Regen Res ; 15(4): 712-723, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31638096

ABSTRACT

Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases. However, the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear. In this study, rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) for five weeks. The mobility of rats was evaluated by forced swimming test, while their cognitive capabilities were evaluated by Y-maze test. Expression of sortilin, α-synuclein, p-JUN, and c-JUN proteins in the substantia nigra were detected by western blot analysis. In addition, immunofluorescence staining of sortilin and α-synuclein was performed to detect expression in the substantia nigra. The results showed that, compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg) + CPA co-treated rats, motor and memory abilities were reduced, surface expression of sortin and α-synuclein in dopaminergic neurons was reduced, and total sortilin and total α-synuclein were increased in CPA-treated rats. MN9D cells were incubated with 500 nM CPA alone or in combination with 10 µM SP600125 (JNK inhibitor) for 48 hours. Quantitative real-time polymerase chain reaction analysis of sortilin and α-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone, but the combination of CPA and SP600125 could inhibit this expression. Predictions made using Jasper, PROMO, and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents. A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction. After sortilin expression was inhibited by sh-SORT1, expression of p-JUN and c-JUN was detected by western blot analysis. Long-term adenosine A1 receptor activation levels upregulated α-synuclein expression at the post-transcriptional level by affecting sortilin expression. The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind to α-synuclein. Co-immunoprecipitation revealed an interaction between sortilin and α-synuclein in MN9D cells. Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression and α-synuclein accumulation, and dramatically improved host cognition and kineticism. This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan (approval No. AUP#20070090) in March 2007 and the Animals Ethics Committee of University of South China (approval No. LL0387-USC) in June 2017.

17.
Acta Biochim Biophys Sin (Shanghai) ; 51(5): 471-483, 2019 May 23.
Article in English | MEDLINE | ID: mdl-30950489

ABSTRACT

Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 µg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Atherosclerosis/metabolism , Cholesterol/metabolism , Lysosomes/metabolism , Macrophages/metabolism , ATP Binding Cassette Transporter 1/genetics , Adaptor Proteins, Vesicular Transport/genetics , Animals , Aortic Diseases/genetics , Aortic Diseases/metabolism , Atherosclerosis/genetics , Cells, Cultured , Foam Cells/drug effects , Foam Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , RNA Interference , Receptors, LDL/genetics , Receptors, LDL/metabolism , THP-1 Cells
18.
Surg Radiol Anat ; 40(7): 815-822, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29737380

ABSTRACT

PURPOSE: To provide the anatomical basis of blood supply of brachial plexus for the clinical microsurgical treatment of brachial plexus injury. METHODS: Thirteen adult anticorrosive cadaveric specimens (8 males, 5 females) were dissected in this study. 3 fresh cases (2 males, 1 female) were used to observe the zonal pattern of arteries supplying brachial plexus, and 10 cases (6 males, 4 females) were used to observe the source and distribution of the brachial plexus arteries under microscope. RESULTS: The brachial plexus is supplied by branches of the subclavian-axillary axis (SAA), and these branches anastomose each other. According to distribution feature, blood supply of the brachial plexus could be divided into three zones. The first zone was from the nerve roots of intervertebral foramina to its proximal trunks, which was supplied by the vertebral artery and the deep cervical artery. The second zone was from the distal nerve trunks of the brachial plexus, encompassing the divisions to its proximal cords, which was supplied by direct branches of the subclavian artery or by branches originating from the dorsal scapular artery. The third zone was from the distal portion of the cords to terminal branches of the brachial plexus, which was supplied by direct branches of the axillary artery. CONCLUSIONS: The zonal pattern of arterial supply to the brachial plexus is a systematic and comprehensive modality to improve anatomical basis for the clinical microsurgical treatment for brachial plexus injury.


Subject(s)
Axillary Artery/anatomy & histology , Brachial Plexus/blood supply , Subclavian Artery/anatomy & histology , Aged , Aged, 80 and over , Anatomic Landmarks , Angiography , Cadaver , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged
19.
Surg Radiol Anat ; 39(6): 601-610, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27866248

ABSTRACT

PURPOSE: To provide the anatomical basis of brachial plexus roots for the diagnosis and treatment of brachial plexus root avulsion injury. METHODS: The morphological features of brachial plexus roots were observed and measured on 15 cervicothoracic spine of adult cadavers. The relationship of brachial plexus nerve roots and the surrounding tissues also were observed, as well as the blood supply of anterior and posterior roots of the brachial plexus. RESULTS: Origination of the nerve roots in the dorsal-ventral direction from the midline was fine-tuned at each level along the spinal cord. The minimum distance of the origin of the nerve root to midline was 2.2 mm at C 5, while the maximum was 3.1 mm at T 1. Inversely, the distance between the origin of the posterior root and the midline of the spinal cord gradually decreased, the maximum being 4.2 mm at C 5 and minimum 2.7 mm at T 1. Meanwhile, there was complicated fibrous connection among posterior roots of the brachial plexus. The C 5-6 nerve roots interlaced with tendons of the scalenus anterior and scalenus medius and fused with the transverse-radicular ligaments in the intervertebral foramina. However, these ligaments were not seen in C 7-8, and T 1. The blood supply of the anterior and posterior roots of the brachial plexus was from the segmental branches of the vertebral artery, deep cervical artery and ascending cervical artery, with a mean outer diameter of 0.61 mm. CONCLUSIONS: The systematic and comprehensive anatomic data of the brachial plexus roots provides the anatomical basis to diagnose and treat the brachial plexus root avulsion injury.


Subject(s)
Brachial Plexus/anatomy & histology , Spinal Nerve Roots/anatomy & histology , Adult , Brachial Plexus/blood supply , Brachial Plexus Neuropathies/surgery , Cadaver , Cervical Vertebrae/anatomy & histology , Cervical Vertebrae/blood supply , Humans , Spinal Nerve Roots/blood supply , Thoracic Vertebrae/anatomy & histology , Thoracic Vertebrae/blood supply
20.
Clin Chim Acta ; 460: 11-7, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27312323

ABSTRACT

Several lines of evidence have shown that SORT1 gene within 1p13.3 locus is an important modulator of the low-density lipoprotein-cholesterol (LDL-C) level and atherosclerosis risk. Here, we summarize the effects of SORT1, which codes for sortilin, on lipid metabolism and development of atherosclerosis and explore the mechanisms underlying sortilin effects on lipid metabolism especially in hepatocytes and macrophages. Recent epidemiological evidence demonstrated that sortilin has been implicated as the causative factor and regulates lipid metabolism in vivo. Hepatic sortilin overexpression leads to both increased and decreased LDL-C levels by several different mechanisms, suggesting the complex roles of sortilin in hepatic lipid metabolism. Macrophage sortilin causes internalization of LDL and probably a reduction in cholesterol efflux, resulting in the intracellular accumulation of excessive lipids. In addition, sortilin deficiency in an atherosclerotic mouse model results in decreased aortic atherosclerotic lesion. Sortilin involves in lipid metabolism, promotes the development of atherosclerosis, and possibly becomes a potential therapeutic target for atherosclerosis treatment.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Atherosclerosis , Lipid Metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cholesterol, LDL/metabolism , Humans , Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...