Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 404: 131943, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38458386

ABSTRACT

BACKGROUND: Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS: An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS: UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS: UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.


Subject(s)
Heart Failure , Proto-Oncogene Proteins c-akt , Rats , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Ventricular Function, Left , Microbubbles , Phosphatidylinositol 3-Kinases , Heart Failure/diagnostic imaging , Heart Failure/drug therapy , Adenosine Triphosphate
2.
J Ultrasound Med ; 42(2): 463-475, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36444908

ABSTRACT

OBJECTIVES: This study aims to determine the effect of low-intensity focused ultrasound (LIFU) in ischemic heart failure (IHF) and explore the potential neuroimmune mechanism. METHODS: Sprague-Dawley rats were subjected to ultrasound (US) with specific parameters, and electrocardiograms were recorded to analyze the effect of LIFU and/or vagal denervation on heart rate. Thereafter, myocardial infarction (MI) was induced by left anterior artery ligation, and LIFU was performed three times a day for 25 days after MI. Echocardiography, Masson staining, and ELISA were used to evaluate the effect of LIFU on the structure and function of the heart. Finally, ELISA, flow cytometry, qRT-PCR, and Western blot analysis were performed to determine the effect of LIFU on the inflammation and the expression of the cholinergic anti-inflammatory pathway (CAP)-related mediators. RESULTS: LIFU reduced heart rate in rats (control vs LIFU, P < .01), and vagotomy (VT) eliminated this effect of LIFU on heart rate (VT vs LIFU + VT, P > .01). LIFU-ameliorated IHF in terms of cardiac structure and function (MI vs MI + LIFU, P < .01), but VT abrogated the beneficial effect of LIFU (MI + VT vs MI + LIFU + VT, P > .01). After the treatment of LIFU, decreased levels of inflammatory cytokines, increased proportion of anti-inflammatory macrophages, and increased expression of CAP-related mediators (MI vs MI + LIFU, P < .01). CONCLUSIONS: LIFU ameliorates IHF whereas the CAP plays a promising role. LIFU has the potential to be a novel nonpharmacological and noninvasive therapy for the treatment of coronary artery disease and other cardiovascular diseases.


Subject(s)
Heart Failure , Myocardial Infarction , Rats , Animals , Neuroimmunomodulation , Rats, Sprague-Dawley , Heart , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Heart Failure/diagnostic imaging , Heart Failure/therapy
3.
Front Cardiovasc Med ; 9: 899099, 2022.
Article in English | MEDLINE | ID: mdl-35795368

ABSTRACT

With growing evidence in clinical practice, the understanding of coronary syndromes has gradually evolved out of focusing on the well-established link between stenosis of epicardial coronary artery and myocardial ischemia to the structural and functional abnormalities at the level of coronary microcirculation, known as coronary microvascular dysfunction (CMD). CMD encompasses several pathophysiological mechanisms of coronary microcirculation and is considered as an important cause of myocardial ischemia in patients with angina symptoms without obstructive coronary artery disease (CAD). As a result of growing knowledge of the understanding of CMD assessed by multiple non-invasive modalities, CMD has also been found to be involved in other cardiovascular diseases, including primary cardiomyopathies as well as heart failure with preserved ejection fraction (HFpEF). In the past 2 decades, almost all the imaging modalities have been used to non-invasively quantify myocardial blood flow (MBF) and promote a better understanding of CMD. Myocardial contrast echocardiography (MCE) is a breakthrough as a non-invasive technique, which enables assessment of myocardial perfusion and quantification of MBF, exhibiting promising diagnostic performances that were comparable to other non-invasive techniques. With unique advantages over other non-invasive techniques, MCE has gradually developed into a novel modality for assessment of the coronary microvasculature, which may provide novel insights into the pathophysiological role of CMD in different clinical conditions. Moreover, the sonothrombolysis and the application of artificial intelligence (AI) will offer the opportunity to extend the use of contrast ultrasound theragnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...