Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(10): 3950-3958, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37248658

ABSTRACT

BACKGROUND: Haloxyfop-P-methyl, an acetyl-CoA carboxylase (ACCase)-inhibiting herbicide, has been extensively used to control grass weeds. Widespread use of haloxyfop-P-methyl in cotton fields in China has led to the development of glutathione transferase (GST)-mediated resistance in Digitaria sanguinalis. An RNA-seq analysis identified DsGSTU1, a tau class glutathione transferase from the D. sanguinalis transcriptome as a potential candidate. Here, we cloned DsGSTU1 from D. sanguinalis young leaf tissues and subsequently characterized DsGSTU1 by a combination of sequence analysis, as well as functional heterologous expression in rice. RESULTS: The full-length coding DNA sequence (CDS) of DsGSTU1 is 717 bp in length. Higher DsGSTU1 expression was observed in haloxyfop-P-methyl-resistant (HR) D. sanguinalis than in haloxyfop-P-methyl-susceptible (HS) plants. Overexpression of the DsGSTU1 gene was confirmed by transformation into the wild-type (WT) Nipponbare rice with pBWA(V)HS, a recombinant expression vector. GST activity in transgenic rice seedlings was 1.18-1.40-fold higher than the WT rice seedlings before and after haloxyfop-P-methyl treatment, respectively. Additionally, transgenic rice seedlings overexpressing DsGSTU1 were less sensitive to haloxyfop-P-methyl. CONCLUSION: Our combined findings suggest that DsGSTU1 is involved in metabolic resistance to haloxyfop-P-methyl in D. sanguinalis. A better understanding of the major genes contributing to herbicide-resistant D. sanguinalis facilitates the development of resistance management strategies for this global invasive grass weed. © 2023 Society of Chemical Industry.


Subject(s)
Herbicides , Oryza , Digitaria/genetics , Glutathione Transferase/genetics , Herbicide Resistance/genetics , Poaceae/genetics , Oryza/genetics , Herbicides/pharmacology , Cloning, Molecular , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism
2.
Chemosphere ; 316: 137766, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36623600

ABSTRACT

Biochar, as an adsorbent, is widely used for the removal of organic pollutants in water body. Hence, after saturated adsorption, regeneration treatment is required to recover the adsorption performance of biochar. In this study, a biochar (P-GBC) prepared by phosphoric acid activation showed high adsorption capacity for methylene blue (MB) with the maximum adsorption capacity (Qm) of 599.66 mg/g. Then, regeneration treatments using 4 mM peroxymonosulfate (PMS), 0.2 M hydrogen peroxide (H2O2) and their mixture were used to regenerate MB-saturated biochar with regeneration efficiencies of 58.24%, 66.01% and 94.88%, respectively. Combining with degradation and quenching experiments, it is found that synergistic effect of H2O2 desorption and PMS degradation is responsible for the enhancement of regeneration efficiency of P-GBC in H2O2-PMS system and enables a high mineralization rate of 82.68% for the MB adsorbed on P-GBC. Furthermore, EPR tests indicate that singlet oxygen (1O2) is assigned as the primary activate species for the degradation of MB and XPS analyses confirm that graphite nitrogen and carbonyl on P-GBC are the main active sites for the activation of PMS. Compared with conventional regenerants, H2O2-PMS system has the advantages of low dosage, high mineralization efficiency, and easy accessibility, and is also effective, sustainable and environmentally friendly for the regeneration of organic pollutants-saturated biochar.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Hydrogen Peroxide , Methylene Blue/chemistry , Peroxides/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 856(Pt 1): 158917, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36155028

ABSTRACT

In recent years, carbon-based materials catalyzing peroxymonosulfate (PMS) for green degradation of persistent organic pollutants have attracted increasing attention. However, PMS activation by hydrochar composite (e.g. hydrochar-montomorillonite) has rarely been investigated. Herein, a simple preparation, low-cost and eco-friendly catalyst of hydrochar-montmorillonite composite (HC-Mt) was prepared to firstly catalyze PMS for the degradation of dicamba (DIC). The as-prepared HC-Mt showed a remarkably better catalyzing performance for PMS than pure hydrochar (HC) due to its good physicochemical characteristics and abundant oxygen-containing groups. Furthermore, the electron spin resonance (ESR) and quenching tests revealed that active species such as SO4-, OH and O2- all participated in the degradation process. DIC sites on C6, Cl 10, and O15 exhibited higher reactivity according to the density functional theory (DFT) calculation, which were easily attacked by active species. The DIC degradation mainly occurred via hydroxyl substitution, decarboxylation, oxidation and ring-cleavage and finally most of the intermediates were mineralized into CO2 and H2O. Finally, the phytotoxicity assessment was measured by the germination growth situation of tobacco and mung beans in the presence of DIC (with or without treatment by HC-Mt/PMS). The result showed that HC-Mt/PMS could significantly reduce the phytotoxicity of DIC to crops, suggesting that catalyzing PMS using HC-Mt was environmentally friendly. Therefore, this work did not only provide a novel catalyzing PMS strategy using hydrochar composite for wastewater treatment, but also give a new idea for herbicide phytotoxicity management.


Subject(s)
Bentonite , Dicamba , Peroxides
4.
Article in English | MEDLINE | ID: mdl-36554671

ABSTRACT

Biochar loading mixed-phase iron oxide shows great advantages as a promising catalyst owing to its eco-friendliness and low cost. Here, γ-Fe2O3-x@biochar (E/Fe-N-BC) composite was successfully prepared by the sol-gel method combined with low-temperature (280 °C) reduction. The Scanning Electron Microscope (SEM) result indicated that γ-Fe2O3-x particles with the size of approximately 200 nm were well-dispersed on the surface of biochar. The CO derived from biomass pyrolysis is the main reducing component for the generation of Fe (II). The high content of Fe (II) contributed to the excellent catalytic performance of E/Fe-N-BC for quinclorac (QNC) degradation in the presence of peroxymonosulfate (PMS). The removal efficiency of 10 mg/L of QNC was 100% within 30 min using 0.3 g/L γ-Fe2O3-x@biochar catalyst and 0.8 mM PMS. The radical quenching experiments and electron paramagnetic resonance analysis confirmed that •OH and SO4•- were the main radicals during the degradation of QNC. The facile and easily mass-production of γ-Fe2O3-x@biochar with high catalytic activity make it a promising catalyst to activate PMS for the removal of organic pollutants.


Subject(s)
Charcoal , Temperature
5.
Nanotechnology ; 33(21)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35130531

ABSTRACT

Environment and energy are two key issues in today's society. In terms of environmental protection, the treatment of phytoremediation residues has become a key problem to be solved urgently, while for energy storage, it tends to utilize low-cost and high specific energy storage materials (i.e. porous carbon). In this study, the phytoremediation residues is applied to the storage materials with low-cost and high specific capacity. Firstly, the phosphorous acid assisted pyrolysis of oilseed rape stems from phytoremediation is effective in the removal of Zn, Cu, Cd and Cr from the derived biochar. Moreover, the derived biochar from phytoremediation residues shows abundant porous structure and polar groups (-O/-P/-N), and it can deliver 650 mAh g-1with 3.0 mg cm-2sulfur, and keeps 80% capacity after 200 cycles when employing it as a sulfur host for lithium-sulfur (Li-S) batteries. Hence, phosphorous acid assisted pyrolysis and application in Li-S battery is a promising approach for the disposal of phytoremediation residues, which is contributed to the environmental protection as well as energy storage.

6.
Chemosphere ; 290: 133266, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34914959

ABSTRACT

Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Biomass , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
7.
J Colloid Interface Sci ; 563: 197-206, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31874307

ABSTRACT

A cobalt(0/II)-incorporated N-doped porous carbon (Co/NC) catalyst was prepared via one-step thermal decomposition of ethylene-diamine tetra-acetic acid and a Co salt. Fine Co nanoparticles composed of metallic and oxidized Co species were formed and well dispersed in the graphene-like film-type N-doped carbon support. The Co species played a dominant role in peroxymonosulfate (PMS) activation to generate sulfate and hydroxyl radicals. The N-doped porous carbon synergistically affected the catalytic performance by enhancing electronic transfer. The resulting Co/NC was a highly efficient heterogeneous catalyst for PMS activation and enabled considerably enhanced quinclorac (QNC) degradation. Typically, 93% QNC (50 mg L-1) removal was achieved with 0.08 g L-1 Co/NC and 20 mmol L-1 PMS. The QNC degradation kinetic data fitted a pseudo-first-order kinetic model well, with a correlation coefficient (R2) higher than 0.99. Investigation of the reaction mechanism suggested that hydroxyl (HO) and sulfate (SO4-) radicals were the predominant active species in the Co/NCPMS system and QNC degradation mainly involved dehydroxylation and substitution of OH for COOH. This Co/NC catalyst is promising for use in advanced oxidation processes for the removal of persistent organic pollutants.

8.
Environ Sci Pollut Res Int ; 26(26): 26947-26962, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31309422

ABSTRACT

To clarify the adsorption mechanism of multi-ions on biochars in competitive environment is very important for the decontamination of co-existed heavy metals. Herein, tobacco stem was pyrolyzed in different temperatures with selected residences to obtain biochars with various surface chemistry. Then the adsorption of co-existed typical heavy-metal ions like lead, cadmium, and copper was studied, followed with systematic analysis of surface properties of the post-adsorption biochars. After carefully examining the adsorption performance and surface property alteration of the demineralized biochars, the adsorption mechanism of multi-ions in competitive environment was discovered. Lead showed the most competitive nature with co-existence of cadmium and copper, but the adsorption capacity reduced significantly with the removal of minerals. Combined with the observation of large amount of lead containing crystals on the post-adsorption biochars, the main adsorption mechanism of lead should be precipitation. The adsorb capability of copper barely changed for biochars with and without minerals, which suggests the best affinity of copper on surface functional groups even with large content of competitors. Biochar that pyrolyzed in 700 °C for 6 h that contained more aromatic structures showed the highest sorbing capability of cadmium, which suggested the dominant position of cation-π interaction in cadmium removal.


Subject(s)
Charcoal/chemistry , Metals, Heavy/chemistry , Nicotiana/chemistry , Adsorption , Environmental Pollutants/chemistry , Plant Stems/chemistry , Pyrolysis , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...