Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 219-225, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372092

ABSTRACT

Inhibiting mesangial cell proliferation is one of the strategies to control the early progression of diabetic nephropathy (DN). GSK3ß is closely related to cell apoptosis as well as the development of DN, but whether it acts on the proliferation of mesangial cells is unclear. This study aimed to elucidate the role and mechanism of GSK3ß-mediated lncRNA in high glucose-induced mesangial cell proliferation. HBZY-1 cells were used to establish the cell model of DN. The automatic cell counter was applied to assess cell proliferation. Flow cytometry was used to detect cell apoptosis and intracellular ROS levels. High-throughput transcriptomics sequencing was performed to detect the different expressions of long noncoding RNAs (lncRNAs) in the cell model of DN after knocking down the expression of GSK3ß by the transfection of siRNA. The expression of RNA was detected by real-time PCR. In the cell model of DN using HBZY-1 cells, cell proliferation was enhanced accompanied by GSK3ß activation and elevated apoptosis rate and reactive oxygen species (ROS) levels. A panel of novel lncRNAs, which were differentially expressed after GSK3ß knockdown in the cell model of DN, were identified by high-throughput transcriptomics sequencing. Among them, the expression of TCONS_00071187 was upregulated under high glucose conditions while the knockdown of the GSK3ß expression led to the downregulation of TCONS_00071187. The knockdown of TCONS_00071187 resulted in reduced mesangial cell proliferation, and decreased apoptosis rates and ROS levels. In conclusion, GSK3ß promoted mesangial cell proliferation by upregulating TCONS_00071187, which led to enhanced ROS production under high glucose conditions in the cell model of DN. This study revealed the role of GSK3ß medicated lncRNAs in the development of DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Glycogen Synthase Kinase 3 beta , RNA, Long Noncoding , Cell Proliferation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Glucose/toxicity , Glycogen Synthase Kinase 3 beta/genetics , Reactive Oxygen Species , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Rats
2.
Mol Med ; 28(1): 23, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35189819

ABSTRACT

BACKGROUND: The inhibition of osteogenic differentiation is a major factor in glucocorticoid-induced bone loss, but there is currently no effective treatment. Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of the neuroendocrine system in bone metabolism has emerged, the precise effects of dopamine receptor signaling on osteoblastogenesis remain unknown. METHODS: In vitro, western blotting and immunofluorescence staining were used to observe the expression of dopamine receptors in MC3T3-E1 and BMSCs cells treated with dexamethasone (Dex). In addition, Alizarin red S (ARS) and alkaline phosphatase (ALP) staining and western blotting were used to evaluate the effect of D1R activation on osteogenic differentiation in Dex-induced MC3T3-E1 cells via the ERK1/2 signaling pathway. In vivo, micro-CT and hematoxylin and eosin (H&E), toluidine blue and immunohistochemical staining were used to determine the effect of D1R activation on Dex-induced bone loss. RESULTS: We demonstrated that the trend in D1R but not D2-5R was consistent with that of osteogenic markers in the presence of Dex. We also demonstrated that the activation of D1R promoted Dex-induced osteogenic differentiation by activating the ERK1/2 pathway in vitro. We further demonstrated that a D1R agonist could reduce Dex-induced bone loss, while pretreatment with a D1R inhibitor blocked the effect of a D1R agonist in vivo. CONCLUSIONS: Activation of D1R promotes osteogenic differentiation and reduces Dex-induced bone loss by activating the ERK1/2 pathway. Hence, D1R could serve as a potential therapeutic target for glucocorticoid-induced osteoporosis.


Subject(s)
Glucocorticoids , Osteogenesis , Cell Differentiation , Glucocorticoids/adverse effects , MAP Kinase Signaling System , Osteoblasts , Signal Transduction
3.
Nanoscale ; 13(6): 3594-3601, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33564813

ABSTRACT

Cytomembrane cancer nanovaccines are considered a promising approach to induce tumor-specific immunity. Most of the currently developed nanovaccines, unfortunately, fail to study the underlying mechanism for cancer prevention and therapy, as well as immune memory establishment, with their long-term anti-tumor immunity remaining unknown. Here, we present a strategy to prepare biomimetic cytomembrane nanovaccines (named CCMP@R837) consisting of antigenic cancer cell membrane (CCM)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with imiquimod (R@837) as an adjuvant to activate the immune system. We found that our CCMP@R837 system enhanced bone-marrow-derived dendritic cell uptake and maturation, as well as increased anti-tumor response against breast cancer 4T1 cells in vitro. Moreover, an immune memory was established after three-time immunization with CCMP@R837 in BALB/c mice. The CCMP@R837-immunized BALB/c mice exhibited suppressed tumor growth and a long survival period (75% of mice lived longer than 50 days after tumor formation). This long-term anti-tumor immunity was achieved by increasing CD8+ T cells and decreasing regulatory T cells in the tumor while increasing effector memory T cells in the spleen. Overall, our platform demonstrates that CCMP@R837 can be a potential candidate for preventive cancer vaccines in the clinic.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Biomimetics , CD8-Positive T-Lymphocytes , Dendritic Cells , Mice , Mice, Inbred BALB C , Polylactic Acid-Polyglycolic Acid Copolymer
4.
Aging (Albany NY) ; 12(21): 21706-21729, 2020 11 07.
Article in English | MEDLINE | ID: mdl-33176281

ABSTRACT

In this study, we investigated the mechanisms by which puerarin alleviates osteoclast-related loss of bone mass in ovariectomy (OVX)-induced osteoporosis model mice. Puerarin-treated OVX mice exhibited higher bone density, fewer tartrate-resistant acid phosphatase (TRAcP)-positive osteoclasts, and levels of lower reactive oxygen species (ROS) within bone tissues than vehicle-treated OVX mice. Puerarin suppressed in vitro osteoclast differentiation, hydroxyapatite resorption activity, and expression of osteoclastogenesis-related genes, such as NFATc1, MMP9, CTSK, Acp5 and c-Fos, in RANKL-induced bone marrow macrophages (BMMs) and RAW264.7 cells. It also reduced intracellular ROS levels by suppressing expression of TRAF6 and NADPH oxidase 1 (NOX1) and increasing expression of antioxidant enzymes such as heme oxygenase-1 (HO-1). Puerarin inhibited TRAF6/ROS-dependent activation of the MAPK and NF-κB signaling pathways in RANKL-induced RAW264.7 cells, and these effects were partially reversed by HO-1 silencing or TRAF6 overexpression. These findings suggest puerarin alleviates loss of bone mass in the OVX-model mice by suppressing osteoclastogenesis via inhibition of the TRAF6/ROS-dependent MAPK/NF-κB signaling pathway.


Subject(s)
Isoflavones/pharmacology , Osteogenesis/drug effects , Osteoporosis, Postmenopausal/pathology , Signal Transduction/drug effects , Animals , Female , Humans , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis, Postmenopausal/metabolism , Ovariectomy , RAW 264.7 Cells , Reactive Oxygen Species , TNF Receptor-Associated Factor 6/metabolism
5.
J Cell Mol Med ; 24(20): 11972-11983, 2020 10.
Article in English | MEDLINE | ID: mdl-32896108

ABSTRACT

Osteolysis around the prosthesis and subsequent aseptic loosening are the main causes of prosthesis failure. Inflammation due to wear particles and osteoclast activation are the key factors in osteolysis and are also potential targets for the treatment of osteolysis. However, it is not clear whether puerarin can inhibit chronic inflammation and alleviate osteolysis. In this study, we investigated the effect of puerarin on Ti particle-induced inflammatory osteolysis in vivo in rat femoral models and in vitro in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast activation models. Our in vivo results showed that puerarin significantly inhibited Ti particle-induced osteolysis and the expression of matrix metallopeptidase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), tumour necrosis factor (TNF)-α and interleukin (IL)-6. In vitro, puerarin prevented RANKL-induced osteoclast differentiation, bone resorption and F-actin ring formation in a concentration-dependent manner. Furthermore, puerarin decreased the phosphorylation of p65 and prevented p65 moving from the cytoplasm to the nucleus. Puerarin also reduced the expression of osteoclast-specific factors and inhibited the inflammatory response. In conclusion, our study proves that puerarin can block the NF-κB signalling pathway to inhibit osteoclast activation and inflammatory processes, which provides a new direction for the treatment of osteolysis-related diseases.


Subject(s)
Isoflavones/pharmacology , NF-kappa B/metabolism , Osteogenesis , Osteolysis/chemically induced , RANK Ligand/pharmacology , Signal Transduction , Titanium/adverse effects , Actins/metabolism , Animals , Bone Resorption/complications , Bone Resorption/pathology , Bone Resorption/prevention & control , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Isoflavones/chemistry , Isoflavones/therapeutic use , Male , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteolysis/complications , Osteolysis/pathology , RAW 264.7 Cells , Rats, Sprague-Dawley , Signal Transduction/drug effects
6.
BMC Pregnancy Childbirth ; 20(1): 284, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32393255

ABSTRACT

BACKGROUND: Recent studies suggest that there is a link between the gut microbiota and glucose metabolism. This study aimed to compare the gut microbiota during early pregnancy of women with hyperglycymia to those with normal blood glucose. METHODS: Gut microbial composition was analysed in 22 women with hyperglycaemia and 28 age-matched healthy controls during their first prenatal visits (< 20 weeks) using high throughput sequencing of the V3-V4 region of the 16S ribosomal RNA gene. Hyperglycemia was diagnosed based on the criteria recommended by the International Association of Diabetes and Pregnancy Study Groups in 2010. RESULTS: Women with hyperglycemia in pregnancy (HIP) had significantly lower microbial richness and diversity compared with healthy pregnant women. The proportions of the Firmicutes and Bacteroidetes phyla and the ratio of Firmicutes:Bacteroidetes were not different between the two groups. We observed that individuals with HIP had an increased abundance of Nocardiaceae, Fusobacteriaceae, etc., whereas healthy controls had significantly higher levels of Christensenellaceae, Clostridiales_vadinBB60_group, Coriobacteriaceae, etc. Similarly, levels of the members of the Ruminococcaceae family, including Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-003, and Ruminococcaceae_UCG-002, were significantly reduced in the HIP group and were negatively correlated with HbA1c. HbA1c levels were positively correlated with Bacteroidaceae and Enterobacteriaceae and negatively correlated with Christensenellaceae, etc. CRP was positively correlated with the Bacteroidaceae and Fusobacteriaceae families and the Fusobacterium genus. CONCLUSIONS: Our study revealed that individuals with HIP have gut microbial dysbiosis and that certain bacterial groups are associated with glucose metabolism during pregnancy. Further study is needed to provide new ideas to control glucose by modifying the gut microbiota.


Subject(s)
Blood Glucose/metabolism , Gastrointestinal Microbiome , Hyperglycemia/metabolism , Adult , Case-Control Studies , Dysbiosis , Feces/microbiology , Female , Humans , Hyperglycemia/microbiology , Pregnancy , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...