Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762645

ABSTRACT

Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections.

2.
Int J Biol Macromol ; 245: 125443, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37353131

ABSTRACT

ABCA1 has been found to be critical for cholesterol efflux in macrophages. Understanding the mechanism regulating ABCA1 expression is important for the prevention and treatment of atherosclerosis. In the present study, a G-quadruplex (G4) structure was identified in the ABCA1 promoter region. This G4 was shown to be essential for ABCA1 transcription. Stabilizing the G4 by ligands surprisingly upregulated ABCA1 expression in macrophages. Knocking out the G4 remarkably reduced ABCA1 expression, and abolished the increase of ABCA1 expression induced by the G4 ligand. By pull-down assays, the protein NONO was identified as an ABCA1 G4 binder. Overexpression or repression of NONO significantly induced upregulation and downregulation of ABCA1 expression, respectively. ChIP and EMSA experiments showed that the G4 ligand promoted the binding between the ABCA1 G4 and NONO, which led to more recruitment of NONO to the promoter region and enhanced ABCA1 transcription. Finally, the G4 ligand was shown to significantly reduce the accumulation of cholesterol in macrophages. This study showed a new insight into the regulation of gene expression by G4, and provided a new molecular mechanism regulating ABCA1 expression in macrophages. Furthermore, the study showed a possible novel application of the G4 ligand: preventing and treating atherosclerosis.


Subject(s)
Atherosclerosis , Macrophages , Humans , Ligands , Macrophages/metabolism , Cholesterol/metabolism , Transcription Factors/genetics , Atherosclerosis/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism
3.
RSC Adv ; 12(23): 14765-14775, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702216

ABSTRACT

G-Quadruplex (G4), as a non-canonical nucleic acid secondary structure, has been proved to be prevalent in genomes and plays important roles in many biological processes. Ligands targeting G4, especially small-molecular fluorescent light-up probes with selectivity for special conformations, are essential for studying the relationship between G4 folding and the cellular response. However, their development still remains challenging but is attracting massive attention. Here, we synthesized a new tetraphenylethene derivative, namely TPE-B, as a parallel G4 probe. Fluorescence experiments showed that TPE-B could give out a strong fluorescence response to the G4 structure. Moreover, it gave a much higher fluorescence intensity response to parallel G4s than anti-parallel ones, which indicated that TPE-B could serve as a special tool for probing parallel G4s. The circular dichroism (CD) spectra and melting curves showed that TPE-B could selectively bind and stabilize parallel G4s without changing their topology. ESI-MS studies showed that TPE-B could bind to parallel G4 with a 1 : 1 stoichiometry. The gel staining results showed that TPE-B was a good candidate for probing parallel G4s. Altogether, the TPE-B molecule may serve as a promising new probe that can discriminate parallel G4s.

5.
Front Chem ; 9: 781198, 2021.
Article in English | MEDLINE | ID: mdl-34858949

ABSTRACT

G-quadruplexes are believed to have important biological functions, so many small molecules have been screened or developed for targeting G-quadruplexes. However, it is still a major challenge to find molecules that recognize specific G-quadruplexes. Here, by using a combination of surface plasmon resonance, electrospray ionization mass spectrometry, circular dichroism, Western blot, luciferase assay, and reverse transcriptase stop assay, we observed a small molecule, namely, oxymatrine (OMT) that could selectively bind to the RNA G-quadruplex in 5'-untranslated regions (UTRs) of human vascular endothelial growth factor (hVEGF), but could not bind to other G-quadruplexes. OMT could selectively repress the translation of VEGF in cervical cancer cells. Furthermore, it could recognize VEGF RNA G-quadruplexes in special conformations. The results indicate that OMT may serve as a potentially special tool for studying the VEGF RNA G-quadruplex in cells and as a valuable scaffold for the design of ligands that recognize different G-quadruplexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...