Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38138844

ABSTRACT

The modification mechanism of low-molecular-weight organic acids on a single-chain silicate mineral (wollastonite) was investigated through a leaching method. Solid and liquid samples were analyzed using atomic absorption spectrophotometer (AAS), X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR). After 720 h of reaction, the results revealed that the dissolution concentration of Si (2200 µmol/L) in citric acid solution is more than that (1950 µmol/L) in oxalic acid. In the composite acids (citric acid and oxalic acid), the dissolution concentration of Si release from wollastonite reached the maximum value of 3304 µmol/L. The dissolution data of Si in wollastonite were fittingly described by the parabolic equation (Ct = a + bt1/2), with the highest correlation coefficients (R2 > 0.993), in the presence of the low-molecular-weight organic acids. The dissolution data suggested that the dissolution reaction process of Si was consistent with the diffusion-controlled model. Citric acid exhibited a higher affinity for attacking the (200) surface, while oxalic acid was prone to dissolve the (002) crystal face. The synergistic effects of oxalic acid and citric acid led to the weakening of the XRD diffraction peak intensity of wollastonite. When exposed to composite acids, the surface of wollastonite was covered with insoluble reactants that restricted the substance diffusion and hindered the reaction. This study offers valuable theoretical insights into the modification or activation of wollastonite by composite low-molecular-weight organic acids.

2.
Materials (Basel) ; 16(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37895644

ABSTRACT

The interaction between low-molecular-weight organic acids (LMWOAs) and minerals in nature has been widely studied; however, limited research has been conducted on the dissolution mechanism of sillimanite in the presence of different organic acids. In this study, the interaction between the sillimanite sample and LMWOAs (citric acid, oxalic acid, and citric/oxalic mixture) at the same pH was investigated. The dissolution rate of Si and Al was high during the initial reaction time, then slowed down in the presence of LMWOAs. The dissolution data for Si and Al from sillimanite in the LMWOAs fit well with the first-order equation (Ct = a(1 - exp(-kt))) (R2 > 0.991). The dissolution process of sillimanite in the organic acids was controlled by the surface chemical reaction step. The dissolution concentration of Si in aqueous citric acid was higher than that in oxalic acid. In contrast, the dissolution concentration of Al in oxalic acid was more than that in citric acid. The maximum concentrations of Si and Al in the presence of composite organic acids were 1754 µmol/L and 3904 µmol/L. The sillimanite before and after treatment with LMWOAs were studied using X-ray diffraction (XRD) and scan electron microscopy (SEM). These results are explained by the characterization of the sillimanite. Under the single acid solution, the (210) crystal plane with a high areal density of Al in sillimanite was easily dissolved by the oxalic acid, while the (120) in sillimanite with a high areal density of Si was more easily dissolved by citric acid. In the composite organic acids, the Si-O bond and Al-O bond in sillimanite were attacked alternately, leading to the formation of some deeper corrosion pits on the surface of sillimanite. The results are of interest in the dissolution mechanisms of sillimanite in the low-molecular-weight organic acids and the environmentally friendly activation of sillimanite.

3.
Materials (Basel) ; 16(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37895686

ABSTRACT

Feldspar is a high-abundance mineral in the earth's crust, and its natural weathering and dissolution processes are an important phenomenon on the earth's surface. This study focused on the dissolution behavior of silicon (Si) and aluminum (Al) in feldspar minerals (microcline and albite) when exposed to low-molecular-weight organic acids (LMWOAs). Various analytical techniques, including atomic absorption spectrophotometer, X-ray diffraction, scanning electron microscope, and Fourier-transform infrared spectroscopy, were employed to investigate these processes. The results revealed that the concentration of Si and Al released from alkali feldspar increased after treatment with LMWOAs, exhibiting non-stoichiometric dissolution. The Si/Al release ratio from feldspar deviated from the expected value of three. Among the LMWOAs tested, oxalic acid was found to be more effective in dissolving aluminum, while citric acid showed greater efficacy in dissolving silicon. Notably, the composite acid demonstrated the highest capacity for feldspar dissolution, with values of 538 µM (Si) and 287 µM (Al) after treatment for 720 h, respectively. The dissolution data for Si and Al in the organic acid solution was fittingly described by a first-order equation, with high correlation coefficients (R2 ≥ 0.992). The characterization of feldspar powders indicated that the (040) crystal plane of feldspar was particularly susceptible to attack by organic acids. In the presence of these acids, the chemical bonds Si (Al)-O, Si-Si(Al), and O-Si(Al)-O shifted to higher wavenumbers. Additionally, the surface corrosion morphology of feldspar exhibited distinct nanostructures, which became more pronounced with increasing exposure time. It was also observed that the reactivity of feldspar increased over time. These findings provide valuable insights into the natural dissolution process of feldspar and offer a new perspective for the study of this phenomenon.

4.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837244

ABSTRACT

A high sintering temperature is required to acquire excellent performance in the production of porcelain but results in high fuel consumption. To prepare the porcelain with outstanding performance at a lower temperature, a self-produced additive containing calcium (CaK) was added into a three-component system of kaolinite-feldspar-quartz. XRD and SEM were used to characterize the samples. The toughening mechanism and Gibbs free energy were investigated. After introducing the CaK, the bending strength of the porcelain fired at 1513 K increased from 56.32 ± 0.65 MPa to 95.31 ± 0.63 MPa, which was 21.83% higher than that of the porcelain without CaK at an optimal firing temperature of 1603 K. The main crystal phase of the sample comprised mullite and quartz in the raw materials at 1453~1603 K. The anorthite was observed at 1453 K and interlocked with needle-shaped mullite at 1513 K in the porcelain after adding CaK, which resulted in the higher bending strength. Quantitative analysis indicated that the amount of anorthite decreased at 1513 K and disappeared at 1543 K; the amount of mullite increased with temperature. The Gibbs free energy of the reaction (CaO•Al2O3•2SiO2 + 2(Al2O3•2SiO2) → 3Al2O3•2SiO2 + CaO + 4SiO2) at high temperature was negative, which suggested that the formation of mullite (3Al2O3•2SiO2) from anorthite (CaO•Al2O3•2SiO2) was possible. These findings implied that the addition of CaK contributed to the appropriate phase composition and microstructure, and the excellent performance of the porcelain at a lower temperature. In addition, the transformation between anorthite and mullite was possible in the special raw material system. The results are of interest in producing anorthite/mullite ceramics at reduced sintering temperatures and the conversion between anorthite and mullite.

5.
Mater Horiz ; 10(5): 1737-1744, 2023 May 09.
Article in English | MEDLINE | ID: mdl-36799081

ABSTRACT

Solar interfacial evaporation has been receiving increasing attention but it is still a huge challenge to achieve excellent coordination between efficient water transport and salt rejection. Here, unlike the common wood-inspired evaporators with equal-diameter directional pores, we have constructed an integrated structure with highly connected gradient pores that mimic the xylem vessels and phloem sieve tubes found in trees. The bio-inspired structure can reduce the resistance of water transport and salt rejection in the same channel. The average transport speed of the 6.5 cm high (2 cm in diameter) porous structure reached 1.504 g s-1, and water was transported 16 cm after 100 seconds. Using multilayer graphene oxide as the photothermal conversion material, the evaporators with different heights can work for more than 9 hours under the condition of 1 sun illumination and 23 wt% brine without any salt crystallization, and the evaporation rates range from 3.28 to 4.51 kg m-2 h-1, with the highest energy utilization efficiency of about 80%. When used in heavy metal treatment, the rejection was greater than 99.99%. This research provides a simple but innovative design idea for evaporators and is expected to further expand the application of solar interfacial evaporation.

6.
Materials (Basel) ; 15(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500013

ABSTRACT

Chloride penetration resistance is one of the most important performance measures for the evaluation of the durability of concrete under a chloride environment. Due to differences in theory and experimental conditions, the durability index (chloride diffusion coefficient) obtained from laboratory accelerated migration tests cannot reflect the real process of chloride ingress into concrete in the natural environment. The difference in test methods must be considered and the transfer parameter kt should be introduced into the service life prediction model when the test results of accelerated methods are used. According to the test data of coastal exposure in South China, the attenuation rule of the chloride diffusion coefficient of different cement-based materials changed with time and was analyzed in this paper. Based on the diffusion coefficient-time curve, the theoretical natural diffusion coefficients of 28 d and 56 d were deduced, which were compared with the chloride diffusion coefficients obtained from the non-steady-state rapid migration method (RCM) at the same age. Therefore, the transfer parameter kt that expounds the relationship between concrete resistance to chloride permeability under a non-stationary electrical accelerated state and natural diffusion in the marine environment can be calculated; thus, the RCM testing index can be used to evaluate the long-term performance of the concrete structure in the marine environment. The results show that the value of kt was related to environmental conditions, test methods, and binder systems.

7.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233942

ABSTRACT

Traditional Portland cement is widely used in the preparation of various hydraulic concrete. However, the high alkalinity produced by cement hydration threatens the survival of aquatic animals and plants. In this paper, a new eco-friendly, ultra-low alkalinity, cementitious material was prepared with industrial waste phosphogypsum, granulated ground blast slag (GGBS) and sulphoaluminate cement. When appropriate proportions are used, the pH value of the test blocks' pore solutions at different ages were all less than 9, showing the remarkable characteristic of ultra-low alkalinity. The XRD and SEM analyses showed that the 56 d hydration products were mainly ettringite and hydrated calcium silicate, and the content of Ca(OH)2 was not detected. The new cementitious material also has the advantages of short setting time, low heat of hydration, high strength of cement mortar and the ability to fix harmful substances in phosphogypsum, such as phosphate, fluoride and Cr and Ba elements. It has a broad application prospect in the construction of island and reef construction, river restoration and so on.

8.
Materials (Basel) ; 15(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35683167

ABSTRACT

A high sintering temperature is usually required to acquire excellent performance in the ceramic industry, but it results in high fuel consumption and high pollution. To reduce the sintering temperature and to toughen the porcelain, a self-produced sintering additive of citric acid activated kaolinite was added to the raw material; X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and thermal gravity analysis and differential scanning calorimetry (TG-DSC) were used to characterize the samples, and the toughening mechanism was discussed. The citric acid activated kaolinite obtained high activity and a large specific surface area. After introducing the activated kaolinite, the bending strength of porcelain at 1270 °C increased from 100.08 MPa to 124.04 Mpa, which was 11.45% higher than that of porcelain without activated kaolinite at 1350 °C. The results of XRD revealed that the content of mullite increased and the quartz decreased at 1270 °C, and the well-distributed needle-like mullite was observed in the images of SEM with the addition of citric acid activated kaolinite. The TG-DSC results indicated adding activated kaolinite to porcelain raw materials reduced the formation of mullite to 994.6 °C. The formation of mullite in a lower temperature served as mullite seeds in a green body during firing, and it enhanced the growth of mullite. These contributed to the appropriate phase composition and the excellent microstructure of porcelain. Thus, the distinguished mechanical performance of porcelain was obtained. Moreover, the sintering additive had no adverse effect on the porcelain body as citric acid-activated kaolinite was one of the main components of the porcelain raw material.

9.
Front Neurosci ; 14: 503, 2020.
Article in English | MEDLINE | ID: mdl-32595442

ABSTRACT

OBJECTIVE: Chronic subdural hematoma (CSDH) is a common disease. Atorvastatin calcium can increase CSDH absorption. However, whether atorvastatin can increase hematoma absorption and reduce recurrence at high altitudes is not clear. METHODS: After burr-hole drainage, CSDH patients were divided into an atorvastatin group and a control group. Follow-up computed tomography (CT) was performed on day 1, months 1, 2, and 3 after surgery. Then, the recurrence rate, poor therapeutic effect, time to recurrence, poor surgical result, recurrence with operation, CSDH volume, and Markwalder grading scale score (MGSS) were calculated, and related risk factors were analyzed. RESULTS: The non-recurrent and recurrent patients in the control group differed significantly in terms of the hemoglobin concentration (HB) [176.24 ± 16.43 vs. 194.25 ± 12.34 (g/L), p < 0.01], CT value [41.92 ± 10.76 vs. 34.12 ± 8.78 (Hu), p < 0.01], and low-density time [3.88 ± 1.04 vs. 5.50 ± 0.87 (d), p < 0.01]. The non-recurrent and recurrent patients in the atorvastatin group differed significantly in terms of the HB [172.66 ± 16.41 vs. 190.45 ± 10.23 (g/L), p < 0.01], CT value [38.91 ± 7.16 vs. 29.50 ± 8.61 (Hu), p < 0.01], and mixed [2 vs. 4 (n), p < 0.05] and low-density time [4.09 ± 0.75 vs. 5.45 ± 1.12 (d), p < 0.01]. The logistic regression analysis showed that HB [odds ratio, 1.14; 95% confidence interval (CI), 1.04-1.25 in the control group, odds ratio, 1.13; 95% CI, 1.03-1.23 in the atorvastatin group] and low-density time (odds ratio, 3.53; 95% CI, 1.42-8.74 in the control group, odds ratio, 2.53; 95% CI, 1.10-5.80 in the atorvastatin group) were possible risk factors for the two groups. The receiver operating characteristic curves showed that the area under the receiver operating characteristic curve values for the HB, CT value (Hu), and low-density time were 0.812, 0.702, and 0.755 for all subjects; 0.812, 0.719, and 0.790 for the control group; and 0.807, 0.682, and 0.756 for the atorvastatin group, respectively. The postoperative follow-up results showed that there was no significant difference in the recurrence rate, poor therapeutic effect, time to recurrence, poor surgical result, recurrence with operation, CSDH volume, or MGSS between the two groups. CONCLUSION: The effect of atorvastatin was not significant after the operation. The risk factors for CSDH recurrence were the HB and low-density time. The HB was the most specific and sensitive predictor of CSDH recurrence.

10.
ACS Appl Mater Interfaces ; 12(2): 2252-2258, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31886998

ABSTRACT

Objects can radiate emission of heat to outer empty space (3 K) through an atmospheric window (8-13 µm), resulting in a possibility for radiative cooling. Multilayer film stacking designs and complex nanophoton coolers have been reported for radiative cooling. Here, we have found that single nanoporous MgHPO4·1.2H2O powder has a high reflectance of 92.20% in the solar spectral region of 0.3-2.5 µm and a high emissivity of 0.94 in the atmospheric window of 8-13 µm. The powder was film-coated on ceramic tiles for temperature and cooling power tests on Al foil. The test results showed that the MgHPO4·1.2H2O coating on the ceramic tile could achieves a daytime radiative cooling of 4.1 °C below the ambient air temperature and a nighttime radiative cooling of 7.6 °C. The average cooling power reaches 78.18 W/m2. Such a simple and low-cost single nanoporous MgHPO4·1.2H2O powder material offers a novel option for large-scale applications of radiative cooling.

12.
Environ Monit Assess ; 187(1): 4195, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25527433

ABSTRACT

This work explores the effects of different nitrogen functional forms on fuel-NOx emissions at 900 °C. The majority of tests are performed with an excess air coefficient of 1.4. Fuel-NOx is detected by measuring N-(1-naphthyl) ethylenediamine dihydrochloride (C12H16Cl2N2) via spectrophotometry. The different functional forms of nitrogen in the raw materials are identified by using X-ray photoelectron spectroscopy (XPS). A reliable density functional theory (DFT) method at the B3LYP/6-311++G** level is employed to investigate the reaction pathways of all functional forms of nitrogen during combustion. The results indicate that the functional forms of nitrogen influence the formation of nitrogen oxides. While under the same experimental conditions, fuel-NOx emissions increase by using less activation energy and nitrogen-containing groups with poor thermal stability. It is determined that fuel-NOx emissions vary in the following order: glycine > pyrrole > pyridine > methylenedi-p-phenylene diisocyanate (MDI). Glycine is the chain structure of amino acids in waste-leather and has low activation energy and poor thermal stability. With these properties, it is noted that glycine produces the most fuel-NOx in all of the raw materials studied. More pyrrole than pyridine in coal lead to high yields of fuel-NOx. The lowest yields of fuel-NO x are obtained using polyurethanes in waste-PU.


Subject(s)
Air Pollutants/analysis , Coal , Environmental Monitoring , Nitrogen Oxides/analysis , Nitrogen/analysis , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...