Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(47): 17846-17853, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37975181

ABSTRACT

The construction and development of metal-organic nanotubes (MONTs) with nanoscale interior channel diameters for potential applications is of great interest. An angular nitrogen-rich ligand, 3,6-bis(2-ethylimidazole)-2-methylpyrimidine (beim-CH3), was designed to construct MONTs by coupling with the V-shaped carboxylate ligands of benzophenone 4,4'-dicarboxylic acid (H2bpndc) and 4,4'-oxybisbenzoic acid (H2obba). Two new MONTs were synthesized and named NCD-166 ([Zn(bpndc)(beim-CH3)]·H2O) and NCD-167 ([Zn(obba)(beim-CH3)]·H2O), and they were isostructural and have almost identical tube inner diameters of approximately 1.76 nm. Benefiting from the abundantly exposed nitrogen and oxygen atoms in their tube walls and open nanoporous channels, they display superior adsorption capacities for Eu3+ (150.90 mg g-1) and high adsorption selectivity (>96%) in the low-concentration solutions. Additionally, it was revealed that the adsorption effect of ether oxygen on rare earth elements was significantly better than that of carbonyl oxygen. The adsorption isotherm conformed to the Langmuir model and the adsorption kinetics obeyed the pseudo-second-order model. These results clearly indicate that such novel MONTs are favorable sorbents for REEs.

2.
Dalton Trans ; 52(43): 15928-15934, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37840460

ABSTRACT

The development of non-precious metal electrocatalysts with high activity for the oxygen evolution reaction (OER) is a crucial and challenging task. In this work, we proposed a solvent-free in situ metal-organic framework (MOF) growth strategy for the fabrication of an Fe-doped CoO/Co electrocatalyst. This approach not only partially granted the MOF's porous structure to the catalyst but also resulted in a tighter combination between the Co metal and CoO, thereby enhancing its electrical conductivity. Furthermore, this method enabled the Fe species to be more uniformly dispersed on CoO/Co, which significantly exposed more active sites for efficient electrocatalysis. The entire synthesis process was solvent-free, except for a small amount of water and ethanol used during catalyst washing. The as-synthesized Fe-CoO/Co electrocatalyst exhibited superior OER activity on a glass carbon electrode, with η = 276 mV at a current density of 10 mA cm-2, even higher than that of the commercial precious IrO2/C catalyst. Additionally, it was also extended to prepare a Ni-doped CoO/Co electrocatalyst by the same procedure with satisfactory OER performance. This work presents a new preparation approach for MOF-derived catalysts with potential applications in energy conversion and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL
...