Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Int J Nanomedicine ; 19: 4923-4939, 2024.
Article in English | MEDLINE | ID: mdl-38828201

ABSTRACT

Purpose: In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods: 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results: The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion: To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.


Subject(s)
Exosomes , Macaca fascicularis , Mesenchymal Stem Cells , Umbilical Cord , Animals , Exosomes/chemistry , Mesenchymal Stem Cells/cytology , Humans , Umbilical Cord/cytology , Male , Female , Cytokines/metabolism
2.
Org Lett ; 26(15): 3069-3074, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38557118

ABSTRACT

Free radical three-component nitration/spirocyclization of unsaturated sulfonamides/amides with tert-butyl nitrite was developed for the construction of diverse NO2-revised 4-azaspiro[4.5]decanes. This tandem system featured metal-free participation, simple operation, good selectivity/yields, and a green/low-cost O source. Meanwhile, one nitro-containing complex molecule and a scaled-up operation were performed well to test the synthetic potential of the cascade reaction. Isotopic labeling, radical inhibition experiments, and DFT analysis were carried out to gain insight into the reaction process.

3.
J Org Chem ; 89(10): 7065-7075, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38666304

ABSTRACT

There are several challenging problems such as the usage of combustible and hazardous hydrogen sources and severe environmental pollution in the conventional reduction of aldehydes/ketones to alcohols. We report here a practical, safe, and green electrochemical reduction, which solves these problems to a large extent. Through an undivided cell, Zn(+) and Sn(-) as the electrode, tetrabutylammonium chloride (TBAC) as the electrolyte, water as the solvent and hydrogen source, a wide range of aldehydes and ketones are converted into the corresponding alcohols in mild conditions. Furthermore, the electrolytes and water can be recycled, and reductive deuteration can be achieved by simply using D2O as the solvent. Finally, the reduction can be smoothly scaled up to a kilogram level.

4.
Chem Commun (Camb) ; 60(29): 3938-3941, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38497681

ABSTRACT

Free radical initiated bicyclization of 1,6-enynes with chloralkanes, is achieved via selective activation of the C(sp3)-H bond of the chloralkane, resulting in diverse polychlorinated/chlorinated polyheterocycles. Two kinds of transformations and a scaled-up experiment were performed to test the synthetic importance of the organic chlorides. Finally, a range of radical inhibition operations and radical clock tests were explored to support the reaction process.

5.
Opt Express ; 32(4): 5230-5241, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439255

ABSTRACT

A vector optical field with inhomogeneous spatial polarization distribution offers what we believe to be a new paradigm to form controllable filaments. However, it is challenging to steer multiple performances (e.g. number, orientation, and interval) of filaments in transparent nonlinear media at one time. Herein, we theoretically self-design and generate a kind of believed to be novel ellipticity and orientation co-variant vector optical field to interact with Kerr medium to solve this issue. The collapsing behaviors of such a new hybrid vector optical field reveal that, by judiciously adjusting the inherent topological charge and initial phase of incident optical field, we are able to give access to stable collapsing filamentation with tunable numbers, orientations and interval. Additionally, the collapsing patterns presented are immune nearly to the extra random noise. The relevant mechanism behind the collapse of the vector optical field is elucidated as well. The findings in this work may have huge potential in optical signal processing, laser machining, and other related applications.

6.
Sci Rep ; 14(1): 5259, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438429

ABSTRACT

In numerous applications, abnormal samples are hard to collect, limiting the use of well-established supervised learning methods. GAN-based models which trained in an unsupervised and single feature set manner have been proposed by simultaneously considering the reconstruction error and the latent space deviation between normal samples and abnormal samples. However, the ability to capture the input distribution of each feature set is limited. Hence, we propose an unsupervised and multi-feature model, Wave-GANomaly, trained only on normal samples to learn the distribution of these normal samples. The model predicts whether a given sample is normal or not by its deviation from the distribution of normal samples. Wave-GANomaly fuses and selects from the wave-based features extracted by the WaveBlock module and the convolution-based features. The WaveBlock has proven to efficiently improve the performance on image classification, object detection, and segmentation tasks. As a result, Wave-GANomaly achieves the best average area under the curve (AUC) on the Canadian Institute for Advanced Research (CIFAR)-10 dataset (94.3%) and on the Modified National Institute of Standards and Technology (MNIST) dataset (91.0%) when compared to existing state-of-the-art anomaly detectors such as GANomaly, Skip-GANomaly, and the skip-attention generative adversarial network (SAGAN). We further verify our method by the self-curated real-world dataset, the result show that our method is better than GANomaly which only use single feature set for training the model.

7.
Phytomedicine ; 126: 155448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394736

ABSTRACT

BACKGROUND: Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE: This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS: The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS: RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION: RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.


Subject(s)
Oxidative Stress , Rosmarinic Acid , Mice , Humans , Animals , Acrylamide/toxicity , Endoribonucleases , Protein Serine-Threonine Kinases , Hippocampus , Inflammation/drug therapy , Endoplasmic Reticulum Stress
8.
Parasite ; 31: 6, 2024.
Article in English | MEDLINE | ID: mdl-38334686

ABSTRACT

Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1ß, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.


Title: Le galactomannane inhibe l'invasion par Trichinella spiralis des cellules de l'épithélium intestinal et améliore la cytotoxicité cellulaire dépendante des anticorps tuant les larves en activant la polarisation des macrophages. Abstract: Des études antérieures ont montré que la galectine recombinante de Trichinella spiralis (rTsgal) est caractérisée par un motif de séquence de domaines de reconnaissance des glucides se liant au bêta-galactoside, et que la rTsgal favorise l'invasion larvaire des cellules épithéliales intestinales. Le galactomannane est un polysaccharide immunostimulateur composé d'un squelette mannane avec des résidus galactose. Le but de cette étude était de déterminer si le galactomannane inhibe l'intrusion larvaire des cellules épithéliales intestinales et améliore la cytotoxicité cellulaire dépendante des anticorps (CCDA) tuant les larves nouvelles-nées en polarisant les macrophages au phénotype M1. Les résultats ont montré que le galactomannane se liait spécialement au rTsgal et supprimait la facilitation du rTsgal sur l'invasion larvaire des cellules épithéliales intestinales. Les résultats de la qPCR, du Western blot et de la cytométrie en flux ont montré que le galactomannane et le rTsgal activaient la polarisation des macrophages M1, comme le démontre la forte expression de l'iNOS (marqueur de M1) et des gènes liés à M1 (IL-1ß, IL-6 et TNF-α), et l'augmentation des macrophages CD86+. Le galactomannane et le rTsgal ont également augmenté la production de NO. La capacité de destruction de la CCDA médiée par les macrophages sur les larves était également significativement améliorée dans les macrophages traités au galactomannane et au rTsgal. Les résultats ont démontré que Tsgal pourrait être considéré comme une molécule cible potentielle d'un vaccin contre l'invasion par T. spiralis, et que le galactomannane pourrait être un nouvel agent thérapeutique adjuvant et un adjuvant vaccinal potentiel contre l'infection à T. spiralis.


Subject(s)
Galactose/analogs & derivatives , Rodent Diseases , Trichinella spiralis , Trichinellosis , Animals , Mice , Mannans/pharmacology , Mannans/metabolism , Larva/genetics , Intestinal Mucosa , Antibody-Dependent Cell Cytotoxicity , Mice, Inbred BALB C
9.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166153

ABSTRACT

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Subject(s)
Receptor, PAR-2 , Trichinella spiralis , Trichinellosis , Animals , Humans , Mice , Caco-2 Cells , Epithelium/metabolism , Helminth Proteins/metabolism , Larva/physiology , MAP Kinase Signaling System , Mice, Inbred BALB C , Protein Kinases , Trichinella spiralis/metabolism , Trichinella spiralis/pathogenicity , Trichinellosis/genetics , Trichinellosis/metabolism , Trypsin/metabolism , Receptor, PAR-2/metabolism
10.
PLoS Negl Trop Dis ; 18(1): e0011872, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190388

ABSTRACT

BACKGROUND: Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING: IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS: rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Humans , Animals , Mice , Larva/physiology , Serine Proteases/genetics , Caco-2 Cells , Claudin-1/metabolism , MAP Kinase Signaling System , Occludin/metabolism , Helminth Proteins/metabolism , Epithelial Cells/metabolism , Mice, Inbred BALB C , Intestinal Mucosa/metabolism , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics
11.
Light Sci Appl ; 13(1): 16, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38221521

ABSTRACT

Holographic 3D display is highly desirable for numerous applications ranging from medical treatments to military affairs. However, it is challenging to simultaneously achieve large viewing angle and high-fidelity color reconstruction due to the intractable constraints of existing technology. Here, we conceptually propose and experimentally demonstrate a simple and feasible pathway of using a well-designed color liquid crystal grating to overcome the inevitable chromatic aberration and enlarge the holographic viewing angle, thus enabling large-viewing-angle and color holographic 3D display. The use of color liquid crystal grating allows performing secondary diffraction modulation on red, green and blue reproduced images simultaneously and extending the viewing angle in the holographic 3D display system. In principle, a chromatic aberration-free hologram generation mechanism in combination with the color liquid crystal grating is proposed to pave the way for on such a superior holographic 3D display. The proposed system shows a color viewing angle of ~50.12°, which is about 7 times that of the traditional system with a single spatial light modulator. This work presents a paradigm for achieving desirable holographic 3D display, and is expected to provide a new way for the wide application of holographic display.

12.
Parasit Vectors ; 17(1): 9, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178167

ABSTRACT

BACKGROUND: The excretory/secretory (ES) antigen of Trichinella spiralis muscle larvae (ML) is currently the most widely used diagnostic antigen to detect T. spiralis infection. However, this antigen has certain drawbacks, such as a complicated ES antigen preparation process and lower sensitivity during the early phase of infection. The aim of this study was to investigate the features of a novel T. spiralis trypsin (TsTryp) and evaluate its potential diagnostic value for trichinellosis. METHODS: The TsTryp gene was cloned and recombinant TsTryp (rTsTryp) expressed. Western blotting and an enzyme-linked immunosorbent assay (ELISA) were performed to confirm the antigenicity of rTsTryp. The expression pattern and distribution signature of TsTryp at various life-cycle stages of T. spiralis were analyzed by quantitative PCR, western blotting and the immunofluorescence test. An ELISA with rTsTryp and ML ES antigens was used to detect immunoglobulins G and M (IgG, IgM) in serum samples of infected mice, swine and humans. The seropositive results were further confirmed by western blot with rTsTryp and ML ES antigens. RESULTS: TsTryp expression was observed in diverse T. spiralis life-cycle phases, with particularly high expression in the early developmental phase (intestinal infectious larvae and adults), with distribution observed mainly at the nematode outer cuticle and stichosome. rTsTryp was identified by T. spiralis-infected mouse sera and anti-rTsTryp sera. Natural TsTryp protease was detected in somatic soluble and ES antigens of the nematode. In mice infected with 200 T. spiralis ML, serum-specific IgG was first detected by rTsTryp-ELISA at 8 days post-infection (dpi), reaching 100% positivity at 12 dpi, and first detected by ES-ELISA at 10 dpi, reaching 100% positivity at 14 dpi. Specific IgG was detected by rTsTryp 2 days earlier than by ES antigens. When specific IgG was determined in serum samples from trichinellosis patients, the sensitivity of rTsTryp-ELISA and ES antigens-ELISA was 98.1% (51/52 samples) and 94.2% (49/52 samples), respectively (P = 0.308), but the specificity of rTsTryp was significantly higher than that of ES antigens (98.7% vs. 95.4%; P = 0.030). Additionally, rTsTryp conferred a lower cross-reaction, with only three serum samples in total testing positive from 11 clonorchiasis, 20 cysticercosis and 24 echinococcosis patients (1 sample from each patient group). CONCLUSIONS: TsTryp was shown to be an early and highly expressed antigen at intestinal T. spiralis stages, indicating that rTsTryp represents a valuable diagnostic antigen for the serodiagnosis of early Trichinella infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Adult , Humans , Swine , Mice , Animals , Trichinellosis/diagnosis , Trypsin , Antigens, Helminth , Helminth Proteins , Enzyme-Linked Immunosorbent Assay/methods , Larva/physiology , Life Cycle Stages , Serologic Tests , Immunoglobulin G , Antibodies, Helminth
13.
Heliyon ; 10(1): e23779, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38223705

ABSTRACT

As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.

14.
Int Immunopharmacol ; 127: 111320, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38064817

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) encompasses Crohn's Disease and Ulcerative Colitis. Reports have highlighted the potential use of helminths or their byproducts as a possible treatment for IBD; however, the mechanisms underlying their ability to modulate inflammation remain incompletely understood. In the present study, we analyze the possible mechanism of a serine protease inhibitor from adult T. spiralis excretion-secretion products (rTsSPI) on the improvement of colitis. METHODS: The immune protective effect of rTsSPI was studied by using DSS or Salmonella-induced colitis in female C56BL/6 mice. The effect of rTsSPI on the immune and inflammatory responses, gut microbiota, permeability of colon epithelium and junction proteins was analyzed. RESULTS: Treating mice with rTsSPI induced type 2 immunity and significantly attenuated clinical symptoms, macroscopical and histological features of DSS or bacteria-induced colonic inflammation. This was accompanied by decreasing neutrophil recruitment in the colonic lamina propria, and reducing TNF-α mRNA levels in the colon; in contrast, the recruitment of M2 macrophages, the expression level of IL-10 and adhesion molecules increased in the colon tissue. Moreover, treatment with rTsSPI led to an improvement in gut microbiota diversity, as well as an increase in the abundance of the bacterial genera Bifidobacterium and Ruminclostridium 5. CONCLUSIONS: Collective findings suggest that pretreatment with rTsSPI can ameliorate colitis in mice by inducing a Th2-type response with M2 macrophages. Data also indicate that immunotherapy with rTsSPI represents an additional strategy to ameliorate inflammatory processes in IBD by enhancing probiotic colonization and maintaining intestinal epithelial barrier function.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Trichinella , Female , Animals , Mice , Intestinal Barrier Function , Colitis/chemically induced , Colitis/therapy , Inflammation , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL
15.
Acta Trop ; 249: 107076, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977254

ABSTRACT

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Subject(s)
Cathepsin C , Helminth Proteins , Intestinal Mucosa , Trichinella spiralis , Trichinellosis , Animals , Female , Mice , Epithelial Cells/parasitology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Larva/pathogenicity , Mice, Inbred BALB C , Trichinella spiralis/genetics , Trichinella spiralis/pathogenicity , Trichinellosis/parasitology , Cathepsin C/genetics , Cathepsin C/metabolism , Intestinal Mucosa/parasitology
16.
PLoS Negl Trop Dis ; 17(12): e0011816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048314

ABSTRACT

BACKGROUND: Cathepsin L, a lysosomal enzyme, participates in diverse physiological processes. Recombinant Trichinella spiralis cathepsin L domains (rTsCatL2) exhibited natural cysteine protease activity and hydrolyzed host immunoglobulin and extracellular matrix proteins in vitro, but its functions in larval invasion are unknown. The aim of this study was to explore its functions in T. spiralis invasion of the host's intestinal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: RNAi significantly suppressed the expression of TsCatL mRNA and protein with TsCatL specific siRNA-302. T. spiralis larval invasion of Caco-2 cells was reduced by 39.87% and 38.36%, respectively, when anti-TsCatL2 serum and siRNA-302 were used. Mice challenged with siRNA-302-treated muscle larvae (ML) exhibited a substantial reduction in intestinal infective larvae, adult worm, and ML burden compared to the PBS group, with reductions of 44.37%, 47.57%, and 57.06%, respectively. The development and fecundity of the females from the mice infected with siRNA-302-treated ML was significantly inhibited. After incubation of rTsCatL2 with Caco-2 cells, immunofluorescence test showed that the rTsCatL2 gradually entered into the cells, altered the localization of cellular tight junction proteins (claudin 1, occludin and zo-1), adhesion junction protein (e-cadherin) and extracellular matrix protein (laminin), and intercellular junctions were lost. Western blot showed a 58.65% reduction in claudin 1 expression in Caco-2 cells treated with rTsCatL2. Co-IP showed that rTsCatL2 interacted with laminin and collagen I but not with claudin 1, e-cadherin, occludin and fibronectin in Caco-2 cells. Moreover, rTsCatL2 disrupted the intestinal epithelial barrier by inducing cellular autophagy. CONCLUSIONS: rTsCatL2 disrupts the intestinal epithelial barrier and facilitates T. spiralis larval invasion.


Subject(s)
Cathepsin L , Tight Junctions , Trichinella spiralis , Trichinellosis , Animals , Female , Humans , Mice , Caco-2 Cells , Cadherins/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Claudin-1/genetics , Claudin-1/metabolism , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Laminin/genetics , Laminin/metabolism , Larva/parasitology , Mice, Inbred BALB C , Occludin/genetics , Occludin/metabolism , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tight Junctions/parasitology , Tight Junctions/pathology , Trichinella spiralis/genetics
17.
Vet Res ; 54(1): 113, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012694

ABSTRACT

Previous studies showed that Trichinella spiralis galectin (Tsgal) facilitates larval invasion of intestinal epithelium cells (IECs). However, IEC proteins binding with Tsgal were not identified, and the mechanism by which Tsgal promotes larval invasion is not clear. Toll-like receptors (TLRs) are protein receptors responsible for recognition of pathogens. The aim of this study was to investigate whether recombinant Tsgal (rTsgal) binds to TLR-4, activates inflammatory pathway in gut epithelium and mediates T. spiralis invasion. Indirect immunofluorescence (IIF), GST pull-down and co-immunoprecipitation (Co-IP) assays confirmed specific binding between rTsgal and TLR-4 in Caco-2 cells. qPCR and Western blotting showed that binding of rTsgal with TLR-4 up-regulated the TLR-4 transcription and expression in Caco-2 cells, and activated p-NF-κB p65 and p-ERK1/2. Activation of inflammatory pathway TLR-4/MAPK-NF-κB by rTsgal up-regulated pro-inflammatory cytokines (IL-1ß and IL-6) and down-regulated anti-inflammatory cytokine TGF-ß in Caco-2 cells, and induced intestinal inflammation. TAK-242 (TLR-4 inhibitor) and PDTC (NF-κB inhibitor) significantly inhibited the activation of TLR-4 and MAPK-NF-κB pathway. Moreover, the two inhibitors also inhibited IL-1ß and IL-6 expression, and increased TGF-ß expression in Caco-2 cells. In T. spiralis infected mice, the two inhibitors also inhibited the activation of TLR-4/MAPK-NF-κB pathway, ameliorated intestinal inflammation, impeded larval invasion of gut mucosa and reduced intestinal adult burdens. The results showed that rTsgal binding to TLR-4 in gut epithelium activated MAPK-NF-κB signaling pathway, induced the expression of TLR-4 and pro-inflammatory cytokines, and mediated larval invasion. Tsgal might be regarded as a candidate molecular target of vaccine against T. spiralis enteral invasive stage.


Subject(s)
Trichinella spiralis , Mice , Animals , Humans , Trichinella spiralis/physiology , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Caco-2 Cells , Larva/physiology , Galectins , Interleukin-6 , Intestinal Mucosa/metabolism , Cytokines/metabolism , Inflammation/veterinary , Transforming Growth Factor beta
18.
J Org Chem ; 88(23): 16511-16519, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37972539

ABSTRACT

The first synthesis of ustusal A as well as expeditious access to (-)-albrassitriol is described as featuring a singlet oxygen [4 + 2] cycloaddition, achieving the desired stereoselectivity for the 1,4-cis-hydroxyl groups. Transformation of (+)-sclareolide to III followed by a key Horner-Wadsworth-Emmons (HWE) reaction and stereospecific allylic oxidation facilitated the first synthesis of elegansin D. The biological evaluation of these natural products together with seven elegansin D analogues was performed, among which several elegansin D analogues exhibited potential anticancer activity against liver cancer HepG2 cells (IC50 = 11.99-25.58 µM) with low cytotoxicity on normal liver HL7702 cells (IC50 > 100 µM).


Subject(s)
Stereoisomerism , Oxidation-Reduction
19.
Res Vet Sci ; 165: 105075, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931574

ABSTRACT

Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1ß) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.


Subject(s)
Trichinella spiralis , Trichinellosis , Vaccines , Animals , Mice , Larva , Galectins , Trichinellosis/prevention & control , Trichinellosis/veterinary , Adjuvants, Immunologic , Cytokines , Mice, Inbred BALB C , Antibodies, Helminth
20.
Parasit Vectors ; 16(1): 433, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993938

ABSTRACT

BACKGROUND: During the early stages of Trichinella spiralis infection, macrophages predominantly undergo polarization to the M1-like phenotype, causing the host's inflammatory response and resistance against T. spiralis infection. As the disease progresses, the number of M2-type macrophages gradually increases, contributing to tissue repair processes within the host. While cysteine protease overexpression is typically associated with inflammation, the specific role of T. spiralis cathepsin L (TsCatL) in mediating macrophage polarization remains unknown. The aim of this study was to assess the killing effect of macrophage polarization mediated by recombinant T. spiralis cathepsin L domains (rTsCatL2) on newborn larvae (NBL). METHODS: rTsCatL2 was expressed in Escherichia coli strain BL21. Polarization of the rTsCatL2-induced RAW264.7 cells was analyzed by enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), western blot, immunofluorescence and flow cytometry. The effect of JSH-23, an inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), on rTsCatL2-induced M1 polarization investigated. Cytotoxic effects of polarized macrophages on NBL were observed using in vitro killing assays. RESULTS: Following the co-incubation of rTsCatL2 with RAW264.7 murine macrophage cells, qPCR and ELISA revealed increased transcription and secretion levels of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1ß and tumor necrosis factor alpha (TNF-α) in macrophages. Western blot analysis showed a significant increase in iNOS protein expression, while the expression level of arginase-1 protein remained unchanged. Flow cytometry revealed a substantial increase in the number of CD86-labeled macrophages. The western blot results also indicated that rTsCatL2 increased the expression levels of phospho-NF-κB and phospho-nuclear factor-κB inhibitor alpha (IκB-α) proteins in a dose-dependent manner, while immunofluorescence revealed that rTsCatL2 induced nuclear translocation of the p65 subunit of NF-κB (NF-κB p65) protein in macrophages. The inhibitory effect of JSH-23 suppressed and abrogated the effect of rTsCatL2 in promoting M1 macrophage polarization. rTsCatL2 mediated polarization of macrophages to the M1-like phenotype and enhanced macrophage adhesion and antibody-dependent cell-mediated cytotoxicity (ADCC) killing of NBL. CONCLUSIONS: The results indicated that rTsCatL2 induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of NBL. This study provides a further understanding of the interaction mechanism between T. spiralis and the host.


Subject(s)
NF-kappa B , Trichinella spiralis , Mice , Animals , NF-kappa B/metabolism , Trichinella spiralis/metabolism , Larva/metabolism , Cathepsin L/metabolism , Macrophages/metabolism , Escherichia coli/metabolism , Antibody-Dependent Cell Cytotoxicity , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...