Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613975

ABSTRACT

The fruit of Litchi chinensis contains high levels of proanthocyanidins (PAs) in the pericarp. These substances can serve as substrates of laccase-mediated rapid pericarp browning after the fruit is harvested. In this study, we found that the major PAs in litchi pericarp were (-)-epicatechin (EC) and several procyanidins (PCs), primarily PC A2, B2, and B1, and the EC and the PC content decreased with the development of the fruit. RNA-seq analysis showed that 43 early and late structure genes related to flavonoid/PA biosynthesis were expressed in the pericarp, including five ANTHOCYANIDIN REDUCTASE (ANR), two LEUCOANTHOCYANIDIN REDUCTASE (LAR), and two ANTHOCYANIDIN SYNTHASE (ANS) genes functioning in the PA biosynthesis branch of the flavonoid pathway. Among these nine PA biosynthesis-related genes, ANR1a, LAR1/2, and ANS1 were highly positively correlated with changes in the EC/PC content, suggesting that they are the key PA biosynthesis-related genes. Several transcription factor (TF) genes, including MYB, bHLH, WRKY, and AP2 family members, were found to be highly correlated with ANR1a, LAR1/2, and ANS1, and their relevant binding elements were detected in the promoters of these target genes, strongly suggesting that these TF genes may play regulatory roles in PA biosynthesis. In summary, this study identified the candidate key structure and regulatory genes in PA biosynthesis in litchi pericarp, which will assist in understanding the accumulation of high levels of browning-related PA substances in the pericarp.


Subject(s)
Litchi , Proanthocyanidins , Fruit/metabolism , Proanthocyanidins/metabolism , Litchi/chemistry , Transcriptome , Flavonoids/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
J Agric Food Chem ; 69(50): 15218-15230, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889093

ABSTRACT

Litchi pericarp turns brown rapidly after fruit harvest, while the mechanism remains obscure. The contents of (-)-epicatechin (EC) and procyanidins (PCs) A2/B1/B2/C1 decreased during the pericarp browning, and a previously identified laccase (ADE/LAC) showed activity to these compounds, with brown products observed in the reactions. By UPLC-DAD-QTOF-MS/MS, isomers of dimeric, trimeric, and tetrameric PCs were detected in the EC-ADE/LAC reaction. In the presence of cyanidin-3-O-rutiside and rutin, anthocyanin-EC and rutin-EC adducts were, respectively, produced, and darker brown precipitation was observed in these reactions relatively to the EC-ADE/LAC reaction alone. ADE/LAC catalyzed the conversion of PC B2 to A-type PC dimers and B-type PC tetramers. ADE/LAC complemented the transparent testa of Arabidopsis LAC15-loss-of-function mutant (tt10) to wild-type dark brown seed coat. The results demonstrated that ADE/LAC-mediated flavonoid polymerization played an important role in the browning of pericarp.


Subject(s)
Litchi , Proanthocyanidins , Flavonoids , Fruit , Laccase/genetics , Polymerization , Tandem Mass Spectrometry
3.
Mol Plant ; 14(7): 1149-1167, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33857689

ABSTRACT

The proteolytic degradation of the photodamaged D1 core subunit during the photosystem II (PSII) repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the PSII repair process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, whereas seedlings overexpressing CLH1 have enhanced light tolerance compared with the wild type. CLH1 is localized in the developing chloroplasts of young leaves and associates with the PSII-dismantling complexes RCC1 and RC47, with a preference for the latter upon exposure to high light. Furthermore, degradation of damaged D1 protein is retarded in young clh1-1/2-2 leaves after 18-h high-light exposure but is rescued by the addition of recombinant CLH1 in vitro. Moreover, overexpression of CLH1 in a variegated mutant (var2-2) that lacks thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. Taken together, these results establish CLH1 as a long-sought chlorophyll dephytylation enzyme that is involved in PSII repair and functions in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Carboxylic Ester Hydrolases/metabolism , Heat-Shock Proteins/metabolism , Light , Metalloendopeptidases/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/radiation effects , Arabidopsis/growth & development , Arabidopsis/radiation effects , Photosynthesis , Plant Leaves/enzymology , Radiation-Protective Agents , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...