Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0276155, 2024.
Article in English | MEDLINE | ID: mdl-38442101

ABSTRACT

Water quality prediction is of great significance in pollution control, prevention, and management. Deep learning models have been applied to water quality prediction in many recent studies. However, most existing deep learning models for water quality prediction are used for single-site data, only considering the time dependency of water quality data and ignoring the spatial correlation among multi-sites. This research defines and analyzes the non-aligned spatial correlations that exist in multi-site water quality data. Then deploy spatial-temporal graph convolution to process water quality data, which takes into account both the temporal and spatial correlation of multi-site water quality data. A multi-site water pollution prediction method called W-WaveNet is proposed that integrates adaptive graph convolution and Convolutional Neural Network, Long Short-Term Memory (CNN-LSTM). It integrates temporal and spatial models by interleaved stacking. Theoretical analysis shows that the method can deal with non-aligned spatial correlations in different time spans, which is suitable for water quality data processing. The model validates water quality data generated on two real river sections that have multiple sites. The experimental results were compared with the results of Support Vector Regression, CNN-LSTM, and Spatial-Temporal Graph Convolutional Networks (STGCN). It shows that when W-WaveNet predicts water quality over two river sections, the average Mean Absolute Error is 0.264, which is 45.2% lower than the commonly used CNN-LSTM model and 23.8% lower than the STGCN. The comparison experiments also demonstrate that W-WaveNet has a more stable performance in predicting longer sequences.


Subject(s)
Water Pollution , Water Quality , Data Accuracy , Memory, Long-Term , Neural Networks, Computer
2.
Sci Rep ; 13(1): 14276, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37652917

ABSTRACT

Graph convolutional networks (GCNs) have achieved impressive results in many medical scenarios involving graph node classification tasks. However, there are difficulties in transfer learning for graph representation learning and graph network models. Most GNNs work only in a single domain and cannot transfer the learned knowledge to other domains. Coronary Heart Disease (CHD) is a high-mortality disease, and there are non-public and significant differences in CHD datasets for current research, which makes it difficult to perform unified transfer learning. Therefore, in this paper, we propose a novel adversarial domain-adaptive multichannel graph convolutional network (DAMGCN) that can perform graph transfer learning on cross-domain tasks to achieve cross-domain medical knowledge transfer on different CHD datasets. First, we use a two-channel GCN model for feature aggregation using local consistency and global consistency. Then, a uniform node representation is generated for different graphs using an attention mechanism. Finally, we provide a domain adversarial module to decrease the discrepancies between the source and target domain classifiers and optimize the three loss functions in order to accomplish source and target domain knowledge transfer. The experimental findings demonstrate that our model performs best on three CHD datasets, and its performance is greatly enhanced by graph transfer learning.


Subject(s)
Coronary Disease , Learning , Humans , Knowledge , Records , Machine Learning
3.
PLoS One ; 17(11): e0278217, 2022.
Article in English | MEDLINE | ID: mdl-36445881

ABSTRACT

Acute coronary syndrome (ACS) is a serious cardiovascular disease that can lead to cardiac arrest if not diagnosed promptly. However, in the actual diagnosis and treatment of ACS, there will be a large number of redundant related features that interfere with the judgment of professionals. Further, existing methods have difficulty identifying high-quality ACS features from these data, and the interpretability work is insufficient. In response to this problem, this paper uses a hybrid feature selection method based on gradient boosting trees and recursive feature elimination with cross-validation (RFECV) to reduce ACS feature redundancy and uses interpretable feature learning for feature selection to retain the most discriminative features. While reducing the feature set search space, this method can balance model simplicity and learning performance to select the best feature subset. We leverage the interpretability of gradient boosting trees to aid in understanding key features of ACS, linking the eigenvalue meaning of instances to model risk predictions to provide interpretability for the classifier. The data set used in this paper is patient records after percutaneous coronary intervention (PCI) in a tertiary hospital in Fujian Province, China from 2016 to 2021. In this paper, we experimentally explored the impact of our method on ACS risk prediction. We extracted 25 key variables from 430 complex ACS medical features, with a feature reduction rate of 94.19%, and identified 5 key ACS factors. Compared with different baseline methods (Logistic Regression, Random Forest, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, and 1D Convolutional Networks), the results show that our method achieves the highest Accuracy of 98.8%.


Subject(s)
Acute Coronary Syndrome , Heart Arrest , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/diagnosis , Research Design , China
4.
Comput Intell Neurosci ; 2022: 2389560, 2022.
Article in English | MEDLINE | ID: mdl-35898766

ABSTRACT

Coronary heart disease (CHD) has become one of the most serious public health issues due to its high morbidity and mortality rates. Most of the existing coronary heart disease risk prediction models manually extract features based on shallow machine learning methods. It only focuses on the differences between local patient features and ignores the interaction modeling between global patients. Its accuracy is still insufficient for individualized patient management strategies. In this paper, we propose CHD prediction as a graph node classification task for the first time, where nodes can represent individuals in potentially diseased populations and graphs intuitively represent associations between populations. We used an adaptive multi-channel graph convolutional neural network (AM-GCN) model to extract graph embeddings from topology, node features, and their combinations through graph convolution. Then, the adaptive importance weights of the extracted embeddings are learned by using an attention mechanism. For different situations, we model the relationship of the CHD population with the population graph and the K-nearest neighbor graph method. Our experimental evaluation explored the impact of the independent components of the model on the CHD disease prediction performance and compared it to different baselines. The experimental results show that our new model exhibits the best experimental results on the CHD dataset, with a 1.3% improvement in accuracy, a 5.1% improvement in AUC, and a 4.6% improvement in F1-score compared to the nongraph model.


Subject(s)
Coronary Disease , Neural Networks, Computer , Humans , Machine Learning
5.
Neural Netw ; 57: 51-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929345

ABSTRACT

For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance.


Subject(s)
Algorithms , Artificial Intelligence , Classification/methods , Normal Distribution , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...