Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2400451, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828672

ABSTRACT

Wound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery. In this study, a smart wound patch system (SWPS) designed for wireless closed-loop and in-situ wound management is presented. The SWPS integrates a microfluidic structure, an organic electrochemical transistor (OECT) based sensor, an electrical stimulation module, and a miniaturized flexible printed circuit board (FPCB). The OECT incorporates a bacteria-responsive DNA hydrogel-coated gate for continuous monitoring of bacterial virulence at wound sites. Real-time detection of OECT readings and on-demand delivery of electrical cues to accelerate wound healing is facilitated by a mobile phone application linked with an FPCB containing low-power electronics equipped with parallel sensing and stimulation circuitry. In this proof-of-concept study, the functionality of the SWPS is validated and its application both in vitro and in vivo is demonstrated. This proposed system expands the arsenal of tools available for effective wound management and enables personalized treatment.

2.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Article in English | MEDLINE | ID: mdl-38707511

ABSTRACT

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Renal Insufficiency, Chronic , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Renal Insufficiency, Chronic/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Phylogeny , Faecalibacterium prausnitzii/genetics , Biodiversity , Dysbiosis/microbiology
3.
Microbiome ; 11(1): 202, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684694

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS: We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1ß and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION: These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.


Subject(s)
CADASIL , Gastrointestinal Microbiome , Mental Disorders , Animals , Mice , Cytokines , gamma-Aminobutyric Acid
4.
ACS Chem Neurosci ; 12(1): 123-132, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33320518

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases without any effective medicine treatments. The neurofibrillary tangles containing hyperphosphorylated tau protein are one important pathological characteristic. Thus, one practicable strategy for AD drug design is to discover compounds that could inhibit tau protein aggregation and/or phosphorylation. In this study, isobavachalcone, a natural plant-derived compound, has been shown to inhibit tau protein aggregation and disaggregate tau fibrils in vitro by directly interacting with tau protein at amino acids I278, V309, etc. It is able to reduce tau phosphorylation at four disease-related sites in vivo by regulating the critical kinase and protein phosphatase, GSK3ß and PP2A. The compound also exhibits protection against tau oligomers-induced apoptosis through the mitochondria and ER mediated apoptotic pathways. In summary, isobavachalcone is a promising candidate for further evaluation as a potential preventive and therapeutic medicine for AD.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/drug therapy , Apoptosis , Chalcones , Humans , Phosphorylation , Protein Aggregates , tau Proteins/metabolism
5.
Food Funct ; 10(12): 7865-7874, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31793596

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease. The molecular mechanisms of AD are not yet clear, and no effective treatments are available to cure AD. Because of the huge number of patients and related costs, it is urgent to discover new medicines to prevent or cure AD. In this study, xanthohumol (XN), a natural botanic compound, is found to inhibit tau protein aggregation and disaggregate tau fibrils. XN directly interacts with tau protein at sites sporadically located in all four repeating domains with a Kd value of 52 µM. Binding with XN does not alter the secondary structures of tau protein. Cellular experiments showed that XN exhibits little cytotoxicity and attenuates apoptosis induced by tau oligomers. The results provide preliminary experimental data to develop XN into medicines, food products, or nutritional supplements for AD. The findings also provide data for computational drug design.


Subject(s)
Flavonoids/chemistry , Propiophenones/chemistry , tau Proteins/chemistry , Animals , Apoptosis/drug effects , Flavonoids/pharmacology , Kinetics , Mice , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Propiophenones/pharmacology , Protein Aggregates , Protein Aggregation, Pathological , tau Proteins/genetics , tau Proteins/metabolism , tau Proteins/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...