Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628959

ABSTRACT

Chalkiness is a key determinant that directly affects the appearance and cooking quality of rice grains. Previously, Floury endosperm 2 (FLO2) was reported to be involved in the formation of rice chalkiness; however, its regulation mechanism is still unclear. Here, FLO2 interaction factor 3 (OsFIF3), a bHLH transcription factor, was identified and analyzed in Oryza sativa. A significant increase in chalkiness was observed in OsFIF3-overexpressed grains, coupled with a round, hollow filling of starch granules and reduced grain weight. OsFIF3 is evolutionarily conserved in monocotyledons, but variable in dicotyledons. Subcellular localization revealed the predominant localization of OsFIF3 in the nucleus. The DAP-seq (DNA affinity purification sequencing) results showed that OsFIF3 could affect the transcriptional accumulation of ß-amylase 1, α-amylase isozyme 2A-like, pectinesterase 11, ß-glucosidase 28 like, pectinesterase, sucrose transport protein 1 (SUT1), and FLO2 through the binding of the CACGTG motif on their promoters. Moreover, FLO2 and SUT1 with abundant OsFIF3 binding signals showed significant expression reduction in OsFIF3 overexpression lines, further confirming OsFIF3's role in starch metabolism regulation and energy material allocation. Taken together, these findings show that the overexpression of OsFIF3 inhibits the expression of FLO2 and SUT1, thereby increasing grain chalkiness and affecting grain weight.


Subject(s)
Oryza , Oryza/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Carbohydrate Metabolism , Edible Grain , Seeds , Calcium Carbonate
2.
Pathogens ; 12(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839553

ABSTRACT

Ribosome assembly factors have been extensively studied in yeast, and their abnormalities may affect the assembly process of ribosomes and cause severe damage to cells. However, it is not clear whether mRNA turnover protein 4 (MRT4) functions in the fungal growth and pathogenicity in Sclerotinia sclerotiorum. Here, we identified the nucleus-located gene SsMRT4 using reverse genetics, and found that knockdown of SsMRT4 resulted in retard mycelia growth and complete loss of pathogenicity. Furthermore, mrt4 knockdown mutants showed almost no appressorium formation and oxalic acid production comparing to the wild-type and complementary strains. In addition, the abilities to ROS elimination and resistance to oxidative and osmotic stresses were also seriously compromised in mrt4 mutants. Overall, our study clarified the role of SsMRT4 in S. sclerotiorum, providing new insights into ribosome assembly in regulating pathogenicity and resistance to environmental stresses of fungi.

3.
J Environ Manage ; 322: 116024, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36055092

ABSTRACT

Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.


Subject(s)
Liriodendron , Climate Change , Ecosystem , Environment , Trees
4.
Opt Express ; 26(6): 7587-7597, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609312

ABSTRACT

Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

5.
J Colloid Interface Sci ; 492: 146-156, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28086117

ABSTRACT

Hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) brushes were modified onto the surface of ion-imprinted polymers (IIPs) via addition-fragmentation chain transfer (RAFT) polymerization. Four different grafting densities (1.43, 1.31, 1.17 and 1.06chains/nm2) of IIPs were obtained, revealed by analysis using gel permeation chromatograph (GPC) and Brunauer-Emmett-Teller (BET). All the grafted IIPs had good anti-interference properties compared to the ungrafted IIPs, although the adsorption capacity of the ungrafted IIPs was higher than that of grafted IIPs in pure water. Among them, the grafted IIP3, with a grafting density of ß=1.17chains/nm2, exhibited superior anti-interference ability in silica and polymer flocculant simulated wastewater; moreover, it remained steady after 10 adsorption-desorption cycles. SEM-EDX and XPS data revealed anti-interference and anti-blockage mechanisms in which hydrophilic PHEMA brushes could effectively adhere to fine particles and flocculants through Van der Waals force interactions, which make the imprinted cavities well protected in a complex wastewater environment. Moreover, these grafted IIPs exhibit similar adsorption rate constants that are approximately 2 times greater than those of ungrafted IIPs, indicating that the PHEMA brushes increased the accessibility to Li(I) due to hydrophilic modification.

6.
Phys Rev E ; 94(1-1): 012216, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575132

ABSTRACT

We report solutions for solitons of the "accessible" type in globally nonlocal nonlinear media of fractional dimension (FD), viz., for self-trapped modes in the space of effective dimension 2

7.
J Hazard Mater ; 306: 313-322, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26774986

ABSTRACT

A novel thymine-functionalized MIL-101 (MIL-101-Thymine) material was synthesized using a post-synthesis method to remove mercury at a high efficiency. MIL-101-Thymine was successfully prepared in this work and was confirmed by several characterization methods, such as (13)C nuclear magnetic resonance, X-ray diffraction, and infrared spectroscopy. The Hg(2+) adsorption agreed well with the Langmuir model, and the maximum adsorption capacity was 51.27mg/g. The adsorption rate fit with the pseudo-second-order kinetic model. Furthermore, MIL-101-Thymine exhibited excellent selectivity towards Hg(2+) over other cations, and the maximum value of the selective coefficient reached 947.34; this result is very likely due to the highly selective interactions of T-Hg(2+)-T in MIL-101-Thymine. The result of X-ray photoelectron spectroscopy also showed that Hg(2+) was coordinated with the N of thymine in MIL-101-Thymine. Moreover, the results of the thermogravimetric analysis and adsorption experiments showed that the Hg atom was two-coordinated with the thymine group. MIL-101-Thymine was used to remove trace Hg(2+) in real water samples, and satisfactory recoveries were obtained.

8.
Article in English | MEDLINE | ID: mdl-26651808

ABSTRACT

We construct rogue waves (RWs) in a coupled two-mode system with the self-focusing nonlinearity of the Manakov type (equal SPM and XPM coefficients), spatially modulated coefficients, and a specially designed external potential. The system may be realized in nonlinear optics and Bose-Einstein condensates. By means of a similarity transformation, we establish a connection between solutions of the coupled Manakov system with spatially variable coefficients and the basic Manakov model with constant coefficients. Exact solutions in the form of two-component Peregrine and dromion waves are obtained. The RW dynamics is analyzed for different choices of parameters in the underlying parameter space. Different classes of RW solutions are categorized by means of a naturally introduced control parameter which takes integer values.

9.
Opt Lett ; 40(24): 5742-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26670501

ABSTRACT

We demonstrate the dual accelerating Airy-Talbot recurrence effect, i.e., the self-imaging of accelerating optical beams, by propagating a superposition of Airy beams with successively changing transverse displacements. The dual Airy-Talbot effect is a spontaneous recurring imaging of the input and of the input with alternating component signs. It results from the constructive interference of Airy wave functions, which is also responsible for other kinds of Airy beams, for example, Airy breathers. An input composed of finite-energy Airy beams also displays the dual Airy-Talbot effect, but it demands a large transverse displacement and diminishes fast along the propagation direction.

10.
Phys Rev Lett ; 115(18): 180403, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565442

ABSTRACT

The dynamics of wave packets in the fractional Schrödinger equation is still an open problem. The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator. We investigate analytically and numerically the propagation of optical beams in the fractional Schrödinger equation with a harmonic potential. We find that the propagation of one- and two-dimensional input chirped Gaussian beams is not harmonic. In one dimension, the beam propagates along a zigzag trajectory in real space, which corresponds to a modulated anharmonic oscillation in momentum space. In two dimensions, the input Gaussian beam evolves into a breathing ring structure in both real and momentum spaces, which forms a filamented funnel-like aperiodic structure. The beams remain localized in propagation, but with increasing distance display an increasingly irregular behavior, unless both the linear chirp and the transverse displacement of the incident beam are zero.

11.
Opt Express ; 23(18): 23867-76, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26368480

ABSTRACT

We demonstrate three-dimensional (3D) Airy-Laguerre-Gaussian localized wave packets in free space. An exact solution of the (3 + 1)D potential-free Schrödinger equation is obtained by using the method of separation of variables. Linear compressed wave pulses are constructed with the help of a superposition of two counter-accelerating finite energy Airy wave functions and the generalized Laguerre-Gaussian polynomials in cylindrical coordinates. Such wave packets do not accelerate and can retain their structure over several Rayleigh lengths during propagation. The generation, control, and manipulation of the linear but localized wave packets described here is affected by four parameters: the decay factor, the radial mode number, the azimuthal mode number and the modulation depth.

12.
Opt Lett ; 40(16): 3786-9, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26274660

ABSTRACT

We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.

13.
Opt Express ; 23(8): 10467-80, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969088

ABSTRACT

We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

14.
Opt Express ; 23(3): 3708-16, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836223

ABSTRACT

Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.

15.
Article in English | MEDLINE | ID: mdl-25375612

ABSTRACT

We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

16.
Article in English | MEDLINE | ID: mdl-23848816

ABSTRACT

A similarity transformation is utilized to reduce the generalized nonlinear Schrödinger (NLS) equation with variable coefficients to the standard NLS equation with constant coefficients, whose rogue wave solutions are then transformed back into the solutions of the original equation. In this way, Ma breathers, the first- and second-order rogue wave solutions of the generalized equation, are constructed. Properties of a few specific solutions and controllability of their characteristics are discussed. The results obtained may raise the possibility of performing relevant experiments and achieving potential applications.

17.
Am J Rhinol Allergy ; 26(2): 152-6, 2012.
Article in English | MEDLINE | ID: mdl-22182701

ABSTRACT

BACKGROUND: The postoperative scaring, ostial stenosis, and adhesions after functional endoscopic sinus surgery for chronic rhinosinusitis remains a major problem. This study was designed to evaluate two new hyaluronan (HA) hydrogels for neo-ostium antistenosis and promoting wound healing in a rabbit maxillary sinus model. METHODS: The anterior wall of the maxillary sinus of 48 rabbits was removed to create a 4-mm circumferential wound both on the nasal and on the sinus sides. A rapid-gelling HA hydrogel or preformed HA hydrogel was filled randomly into the right or left sinus, while the opposite sinus served as blank control or was treated with Merogel (Medtronic Xomed Surgical Products, Jacksonville, FL) as control. The neo-ostium diameter and histological scores were evaluated and analyzed postoperatively. RESULTS: The neo-ostium diameter in the rapid-gelling HA hydrogel-treated side was significantly larger than that in the blank control side with a mean difference of 1.46 ± 0.99 mm (p = 0.03), 1.30 ± 0.61 mm (p = 0.0087), and 1.60 ± 0.25 mm (p = 0.00015) at 2, 3, and 4 weeks, respectively; the neo-ostium diameter in the preformed HA hydrogel-treated side at 2 weeks was significantly larger than that in the blank control side or Merogel control side with a mean difference of 1.46 ± 0.76 mm (p = 0.002) or 0.54 ± 0.36 mm (p = 0.007), respectively. The preformed HA hydrogel-treated side showed better histology scores at 2 weeks in heterophils, fibrosis, and osteogenesis than the blank control, and the chronic inflammation (lymphocyte/plasmacyte infiltration) was not prevalent. CONCLUSION: During the postoperative follow-up period both of the two HA hydrogels significantly prevented neo-ostium stenosis and the preformed HA hydrogel promoted wound healing.


Subject(s)
Bandages , Hyaluronic Acid/administration & dosage , Hydrogels/administration & dosage , Maxillary Sinus/surgery , Postoperative Complications/therapy , Rhinitis/surgery , Sinusitis/surgery , Wound Healing , Animals , Endoscopy/adverse effects , Feasibility Studies , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Models, Animal , Nasal Obstruction/etiology , Nasal Obstruction/prevention & control , Rabbits , Tissue Adhesions/etiology , Tissue Adhesions/prevention & control
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046611, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181300

ABSTRACT

We demonstrate "hidden solvability" of the nonlinear Schrödinger (NLS) equation whose nonlinearity coefficient is spatially modulated by Hermite-Gaussian functions of different orders and the external potential is appropriately chosen. By means of an explicit transformation, this equation is reduced to the stationary version of the classical NLS equation, which makes it possible to use the bright and dark solitons of the latter equation to generate solitary-wave solutions in our model. Special kinds of explicit solutions, such as oscillating solitary waves, are analyzed in detail. The stability of these solutions is verified by means of direct integration of the underlying NLS equation. In particular, our analytical results suggest a way of controlling the dynamics of solitary waves by an appropriate spatial modulation of the nonlinearity strength in Bose-Einstein condensates, through the Feshbach resonance.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036603, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517612

ABSTRACT

Applying Hirota's binary operator approach to the (2+1)-dimensional nonlinear Schrödinger equation with the radially variable diffraction and nonlinearity coefficients, we derive a variety of exact solutions to the equation. Based on the solitary wave solutions derived, we obtain some special soliton structures, such as the embedded, conical, circular, breathing, dromion, ring, and hyperbolic soliton excitations. For some specific choices of diffraction and nonlinearity coefficients, we discuss features of the (2+1)-dimensional multisolitonic solutions.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 2): 026604, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405921

ABSTRACT

We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity.

SELECTION OF CITATIONS
SEARCH DETAIL
...