Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37959483

ABSTRACT

Based on flexible polyurethane foam (FPUF), which is reversible after compression, and expanded polystyrene foam (EPS), which has a high cushioning energy absorption capacity, the parallel and series combinations of FPUF and EPS are provided. According to experimental data of FPUF and EPS uniaxial compression large deformation, the mechanical properties and cushioning effectiveness of the FPUF-EPS combination materials with different structural scale parameters were investigated by theory analysis and finite element simulation. The mechanical response and the cushioning effectiveness influencing factors of FPUF-EPS parallel (FE-P) and FPUF-EPS series (FE-S) combination materials under single compressive load, single-impact load, and multiple compressive loads were obtained. The differences in mechanical properties and cushioning effectiveness of FE-P, FE-S, FPUF, and EPS are analyzed. The influence law of structural scale parameters and load strength on the mechanical properties and cushioning effectiveness of FE-P and FE-S is provided. It indicates that the cushion properties of combination materials should be adjusted to satisfy product protection requirements. It is beneficial for the design optimization of cushioning and packaging protection.

2.
ACS Appl Mater Interfaces ; 15(42): 49583-49594, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823823

ABSTRACT

The performance of contact resistive pressure sensors heavily relies on the intrinsic characteristics of the active layers, including the mechanical surface structure, conductivity, and elastic properties. However, efficiently and simply regulating the conductivity, morphology, and modulus of the active layers has remained a challenge. In this study, we introduced electro-polymerized polypyrrole (ePPy) to design flexible contact piezoresistive sensors with tailored intrinsic properties. The customizable intrinsic property of ePPy was comprehensively illustrated on the chemical and electronic structure scale, and the impact of ePPy's intrinsic properties on the sensing performance of the device was investigated by determining the correlation between resistivity, roughness, and device sensitivity. Due to the synergistic effects of roughness, conductivity, and elastic properties of the active layers, the flexible ePPy-based pressure sensor exhibited high sensitivity (3.19 kPa-1, 1-10 kPa, R2 = 0.97), fast response time, good durability, and low power consumption. These advantages allowed the sensor to offer an immediate response to human motion such as finger-bending and grasping movements, demonstrating the promising potential of tailorable ePPy-based contact piezoresistive sensors for wearable electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...