Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Article in English | MEDLINE | ID: mdl-38400575

ABSTRACT

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Subject(s)
Biological Products , Fibrinolytic Agents , Thrombosis , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Thrombosis/drug therapy , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Animals , Platelet Activation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298829

ABSTRACT

Due to the presence of physiological barriers, it is difficult to achieve the desired therapeutic efficacy of drugs; thus, it is necessary to develop an efficient drug delivery system that enables advanced functions such as self-monitoring. Curcumin (CUR) is a naturally functional polyphenol whose effectiveness is limited by poor solubility and low bioavailability, and its natural fluorescent properties are often overlooked. Therefore, we aimed to improve the antitumor activity and drug uptake monitoring by simultaneously delivering CUR and 5-Fluorouracil (5-FU) in the form of liposomes. In this study, dual drug-loaded liposomes (FC-DP-Lip) encapsulating CUR and 5-FU were prepared by the thin-film hydration method; their physicochemical properties were characterized; and their biosafety, drug uptake distribution in vivo, and tumor cell toxicity were evaluated. The results showed that the nanoliposome FC-DP-Lip showed good morphology, stability, and drug encapsulation efficiency. It showed good biocompatibility, with no side effects on zebrafish embryonic development. In vivo uptake in zebrafish showed that FC-DP-Lip has a long circulation time and presents gastrointestinal accumulation. In addition, FC-DP-Lip was cytotoxic against a variety of cancer cells. This work showed that FC-DP-Lip nanoliposomes can enhance the toxicity of 5-FU to cancer cells, demonstrating safety and efficiency, and enabling real-time self-monitoring functions.


Subject(s)
Antineoplastic Agents , Curcumin , Nanoparticles , Animals , Curcumin/pharmacology , Curcumin/chemistry , Liposomes/chemistry , Fluorouracil/pharmacology , Zebrafish , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Nanoparticles/chemistry
3.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743311

ABSTRACT

(1) Background: Curcumin (CUR) and tetrandrine (TET) are natural compounds with various bioactivities, but have problems with low solubility, stability, and absorption rate, resulting in low bioavailability, and limited applications in food, medicine, and other fields. It is very important to improve the solubility while maintaining the high activity of drugs. Liposomes are micro-vesicles synthesized from cholesterol and lecithin. With high biocompatibility and biodegradability, liposomes can significantly improve drug solubility, efficacy, and bioavailability. (2) Methods: In this work, CUR and TET were encapsulated with nano-liposomes and g DSPE-MPEG 2000 (DP)was added as a stabilizer to achieve better physicochemical properties, biosafety, and anti-tumor effects. (3) Results: The nano-liposome (CT-DP-Lip) showed stable particle size (under 100 nm) under different conditions, high solubility, drug encapsulation efficiency (EE), loading capacity (LC), release rate in vitro, and stability. In addition, in vivo studies demonstrated CT-DP-Lip had no significant toxicity on zebrafish. Tumor cytotoxicity test showed that CT-DP-Lip had a strong inhibitory effect on a variety of cancer cells. (4) Conclusions: This work showed that nano-liposomes can significantly improve the physical and chemical properties of CUR and TET and make them safer and more efficient.


Subject(s)
Chemical and Drug Induced Liver Injury , Curcumin , Neoplasms , Animals , Benzylisoquinolines , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Liposomes/chemistry , Neoplasms/drug therapy , Particle Size , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...