Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 239(6): 1175-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24573224

ABSTRACT

Ramie is an important natural fiber. There has been little research on the molecular mechanisms of ramie related to the absorption, utilization and metabolism of nitrogen (N), phosphorus (P) and potassium (K). One approach to reveal the mechanisms of N, P and K (NPK) utilization and metabolism in ramie is comparative proteome analysis. The differentially expressed proteins in the leaves of ramie were analyzed by proteome analysis after 6 days of N- and K-deficient treatments and 3 days of P-deficient treatment using MALDI-TOF/TOF mass spectrometry and 32, 27 and 51 differential proteins were obtained, respectively. These proteins were involved in photosynthesis, protein destination and storage, energy metabolism, primary metabolism, disease/defense, signal transduction, cell structure, transcription, secondary metabolism and protein synthesis. Ramie responded to NPK stress by enhancing secondary metabolism and reducing photosynthesis and energy metabolism to increase endurance. Specifically, ramie adapted to NPK deficiency by increasing signal transduction pathways, enhancing the connection between glycolysis and photosynthesis, promoting the intracellular flow of carbon and N; promoting the synthesis cysteine and related hormones and upregulating actin protein to promote growth of the root system. The experimental results provide important information for further study on the high-efficiency NPK utilization mechanism of ramie.


Subject(s)
Boehmeria/drug effects , Nitrogen/pharmacology , Phosphorus/pharmacology , Plant Proteins/metabolism , Potassium/pharmacology , Boehmeria/growth & development , Chlorophyll/chemistry , Chlorophyll/metabolism , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism , Gene Expression Regulation, Plant/drug effects , Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Proteins/genetics , Potassium/metabolism , Proteome , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...