Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745240

ABSTRACT

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Artesunate , Disease Models, Animal , Neuroprotective Agents , Protein Kinases , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Female , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/pathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Protein Kinases/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Microscopy, Electron, Transmission , Mitophagy/drug effects , Apoptosis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Hippocampus/pathology , Hippocampus/drug effects , Hippocampus/metabolism
2.
Mol Neurobiol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421467

ABSTRACT

Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1ß mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.

3.
Article in English | MEDLINE | ID: mdl-34457020

ABSTRACT

Gualou Guizhi decoction (GLGZD) treatment exerts neuroprotective effects and promotes spasticity following ischemic stroke. However, the molecular mechanism of GLGZD treatment on ischemic stroke remains unclear. Our previous study indicated that GLGZD ameliorates neuronal damage caused by secondary inflammatory injury induced by microglia. In the present study, we investigate the potential mechanism of GLGZD treatment on neuron damage induced by neuroinflammation via mmu-miR-155 in vitro. The HT22 cell line and the BV2 cell line were exposed to oxygen/glucose-deprive (OGD) conditions; the conditioned medium was prepared using the supernatants from OGD-stimulated BV2 cells after pretreating with GLGZD. Cell viability was determined by MTT assays; levels of released inflammatory cytokines were assessed using the BioPlex system. mmu-miR-155 and its targeting genes were detected using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression of anti-inflammatory proteins was evaluated by Western blotting. DAPI staining was used to test the apoptotic cells. Our results showed that GLGZD pretreatment significantly induced IL10 release and decreased the production of TNF-α, IL6, and IFN-γ. In addition, GLGZD markedly attenuated mmu-miR-155 expression and its downstream SOCS1, SMAD2, SHIP1, and TAB2 expression levels. The DAPI-stained apoptotic cell death and caspase-3 activation in HT22 cells exposed to the conditioned medium were reversed by GLGZD treatment. Our findings suggested that GLGZD pretreatment downregulates the mmu-miR-155 signaling, which inhibits microglial inflammation, thereby resulting in the suppression of neuron apoptosis after OGD stress. The underlying mechanisms may provide the support for GLGZD treatment of cerebral ischemic injury.

4.
J Appl Oral Sci ; 27: e20180713, 2019.
Article in English | MEDLINE | ID: mdl-31691738

ABSTRACT

Vitamin D has been known to have important regulatory functions in inflammation and immune response and shows inhibitory effects on experimental periodontitis in animal models. However, the potential mechanism has yet to be clarified. Recent studies have highlighted Aryl hydrocarbon receptor (AhR) and its downstream signaling as a crucial regulator of immune homeostasis and inflammatory regulation. OBJECTIVE: This study aimed to clarify the effect of 1,25-dihydroxyvitamin D3 (VD3) on experimental periodontitis and AhR/nuclear factor-κB (NF-κB)/NLR pyrin domain-containing 3 (NLRP3) inflammasome pathway in the gingival epithelium in a murine model. METHODOLOGY: We induced periodontitis in male C57BL/6 wild-type mice by oral inoculation of Porphyromonas gingivalis (P. gingivalis), and subsequently gave intraperitoneal VD3 injection to the mice every other day for 8 weeks. Afterwards, we examined the alveolar bone using scanning electron microscopy (SEM) and detected the gingival epithelial protein using western blot analysis and immunohistochemical staining. RESULTS: SEM images demonstrated that alveolar bone loss was reduced in the periodontitis mouse model after VD3 supplementation. Western blot analyses and immunohistochemical staining of the gingival epithelium showed that the expression of vitamin D receptor, AhR and its downstream cytochrome P450 1A1 were enhanced upon VD3 application. Additionally, VD3 decreased NF-κB p65 phosphorylation, and NLRP3, apoptosis-associated speck-like protein, caspase-1, interleukin-1ß (IL-1ß) and IL-6 protein expression. CONCLUSIONS: These results implicate the alleviation of periodontitis and the alteration of AhR/NF-κB/NLRP3 inflammasome pathway by VD3 in the mouse model. The attenuation of this periodontal disease may correlate with the regulation of AhR/NF-κB/NLRP3 inflammasome pathway by VD3.


Subject(s)
Bone Density Conservation Agents/pharmacology , Calcitriol/pharmacology , NF-kappa B/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Periodontitis/drug therapy , Periodontitis/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Alveolar Bone Loss , Animals , Blotting, Western , Bone Density Conservation Agents/analysis , Calcitriol/analysis , Caspase 1/analysis , Gingiva/drug effects , Gingiva/metabolism , Gingiva/pathology , Immunohistochemistry , Interleukin-1beta/analysis , Interleukin-6/analysis , Male , Mice, Inbred C57BL , NF-kappa B/analysis , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Periodontitis/pathology , Porphyromonas gingivalis , Receptors, Aryl Hydrocarbon/analysis , Reference Values , Reproducibility of Results , Treatment Outcome
5.
J Orthop Surg Res ; 14(1): 325, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31623650

ABSTRACT

BACKGROUND: TLR2 (Toll-like receptor 2) signaling and its downstream proinflammatory cytokines are considered to be important in the progression of peri-implantitis. A natural medicine, mangiferin has exhibited modulatory effect on TLR2 signaling and anti-inflammatory effects on different diseases. The objective of the present study is to investigate the effect of mangiferin on peri-implantitis and the potential mechanisms by administering this drug to an experimental peri-implantitis mouse model. METHODS: Maxillary left first, second, and third molars of mice were extracted, and dental implants were placed in the region of the maxillary left second molars. Then, peri-implantitis was induced by tying ligatures around implants, and mangiferin was given orally to the mice. After 6-week mangiferin treatment, bone loss around the implants was detected using micro-computerized tomography (micro-CT). Alveolar bone and inflammatory infiltrate in peri-implant tissues were examined using hematoxylin and eosin (H&E) staining. Production of interleukin-6 (IL6), a TLR2 downstream proinflammatory cytokine, in the tissue surrounding implants was measured using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis. IL6 protein expression and TLR2 signaling pathway activation in peri-implant tissues were detected using western blot analysis. RESULTS: Micro-CT demonstrated reduced bone loss in peri-implantitis upon mangiferin administration. Additionally, H&E staining showed more alveolar bone and less inflammatory infiltrate in peri-implant tissues after mangiferin application. Moreover, qRT-PCR analysis demonstrated lower levels of IL6 gene expression, and western blot analysis showed decreased protein expression of IL6 and TLR2, and suppressed phosphorylation of TLR2 downstream nuclear factor-κB, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase after mangiferin treatment. CONCLUSIONS: These results suggest the suppressive effect of mangiferin on bone damage and inflammatory infiltrate in peri-implantitis. These therapeutic effects may be associated with inhibited IL6 production and reduced TLR2 signaling activation in peri-implant tissues.


Subject(s)
Peri-Implantitis/drug therapy , Xanthones/therapeutic use , Animals , Drug Evaluation, Preclinical , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Peri-Implantitis/metabolism , Toll-Like Receptor 2/metabolism , Xanthones/pharmacology
6.
J Orthop Surg Res ; 14(1): 167, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31146750

ABSTRACT

BACKGROUND: Excessive inflammatory response under hyperglycemia can impair alveolar bone defect healing under diabetic conditions. NLRP3 (NACHT [nucleotide-binding oligomerization], LRR [leucine-rich repeat], and PYD [pyrin domain] domains-containing protein 3) inflammasome has been considered to play a crucial role in the inflammatory response, but its correlation with the impaired alveolar bone repair in diabetes still remains unclarified. The objective of the current study is to investigate the effect of NLRP3 inflammasome inhibition by a lentiviral short hairpin RNA (shRNA) targeting NLRP3 on alveolar bone defect healing in diabetic rats. METHODS: Diabetes was induced in rats by high-fat diet and streptozotocin injection, and alveolar bone defects in both maxillae were created by surgery. Then, the lentiviral shRNA targeting NLRP3 was applied in the defect. Eight weeks after surgery, the alveolar bone regeneration was examined using hematoxylin and eosin (H&E) staining, and the gene expression in the bone healing site was detected using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis and western blot analysis. RESULTS: H&E staining showed that treatment with lentiviral shRNA targeting NLRP3 could increase the bone regeneration score in the alveolar bone defect of diabetic rats. Additionally, qRT-PCR analysis and western blot analysis of the bone defect demonstrated that this shRNA inhibited the expression of NLRP3, apoptosis-associated speck-like protein containing a CARD, caspase-1, and proinflammatory cytokine interleukin-1ß and increased the expression of osteogenic markers Runt-related transcription factor 2 and osteocalcin. CONCLUSIONS: Our findings suggested that inhibition of NLRP3 inflammasome could improve alveolar bone defect healing in diabetic rats. The beneficial effect may correlate with reduced proinflammatory cytokine production and increased osteogenic gene expression in hyperglycemia.


Subject(s)
Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alveolar Bone Loss/drug therapy , Animals , Diabetes Mellitus, Experimental/drug therapy , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Male , RNA, Small Interfering/administration & dosage , Rats , Rats, Wistar
7.
J. appl. oral sci ; 27: e20180713, 2019. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1040234

ABSTRACT

Abstract Vitamin D has been known to have important regulatory functions in inflammation and immune response and shows inhibitory effects on experimental periodontitis in animal models. However, the potential mechanism has yet to be clarified. Recent studies have highlighted Aryl hydrocarbon receptor (AhR) and its downstream signaling as a crucial regulator of immune homeostasis and inflammatory regulation. Objective: This study aimed to clarify the effect of 1,25-dihydroxyvitamin D3 (VD3) on experimental periodontitis and AhR/nuclear factor-κB (NF-κB)/NLR pyrin domain-containing 3 (NLRP3) inflammasome pathway in the gingival epithelium in a murine model. Methodology: We induced periodontitis in male C57BL/6 wild-type mice by oral inoculation of Porphyromonas gingivalis (P. gingivalis), and subsequently gave intraperitoneal VD3 injection to the mice every other day for 8 weeks. Afterwards, we examined the alveolar bone using scanning electron microscopy (SEM) and detected the gingival epithelial protein using western blot analysis and immunohistochemical staining. Results: SEM images demonstrated that alveolar bone loss was reduced in the periodontitis mouse model after VD3 supplementation. Western blot analyses and immunohistochemical staining of the gingival epithelium showed that the expression of vitamin D receptor, AhR and its downstream cytochrome P450 1A1 were enhanced upon VD3 application. Additionally, VD3 decreased NF-κB p65 phosphorylation, and NLRP3, apoptosis-associated speck-like protein, caspase-1, interleukin-1β (IL-1β) and IL-6 protein expression. Conclusions: These results implicate the alleviation of periodontitis and the alteration of AhR/NF-κB/NLRP3 inflammasome pathway by VD3 in the mouse model. The attenuation of this periodontal disease may correlate with the regulation of AhR/NF-κB/NLRP3 inflammasome pathway by VD3.


Subject(s)
Animals , Male , Periodontitis/metabolism , Periodontitis/drug therapy , Calcitriol/pharmacology , NF-kappa B/drug effects , Bone Density Conservation Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Periodontitis/pathology , Reference Values , Calcitriol/analysis , Immunohistochemistry , Blotting, Western , Reproducibility of Results , Alveolar Bone Loss , NF-kappa B/analysis , Interleukin-6/analysis , Treatment Outcome , Receptors, Aryl Hydrocarbon/analysis , Receptors, Aryl Hydrocarbon/drug effects , Porphyromonas gingivalis , Caspase 1/analysis , Bone Density Conservation Agents/analysis , Interleukin-1beta/analysis , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Gingiva/drug effects , Gingiva/metabolism , Gingiva/pathology , Mice, Inbred C57BL
8.
Plant Mol Biol ; 98(3): 233-247, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30203234

ABSTRACT

KEY MESSAGE: Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.


Subject(s)
Chrysanthemum/physiology , Pollen/physiology , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant/physiology , Plant Infertility/genetics , Pollen/cytology
9.
Int J Mol Sci ; 19(3)2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29533976

ABSTRACT

Most chrysanthemum cultivars are self-incompatible, so it is very difficult to create pure lines that are important in chrysanthemum breeding and theoretical studies. In our previous study, we obtained a self-compatible chrysanthemum cultivar and its self-pollinated seed set was 56.50%. It was interesting that the seed set of its ten progenies ranged from 0% to 37.23%. Examination of the factors causing the differences in the seed set will lead to an improved understanding of chrysanthemum self-incompatibility, and provide valuable information for creating pure lines. Pollen morphology, pollen germination percentage, pistil receptivity and embryo development were investigated using the in vitro culture method, the paraffin section technique, scanning electron microscopy and transmission electron microscopy. Moreover, RNA sequencing and bioinformatics were applied to analyzing the transcriptomic profiles of mature stigmas and anthers. It was found that the self-pollinated seed set of "Q10-33-1①","Q10-33-1③","Q10-33-1④" and "Q10-33-1⑩" were 37.23%, 26.77%, 7.97% and 0%, respectively. The differences in fertility among four progenies were mainly attributable to differences in pollen germination percentage and pistil receptivity. Failure of the seed set in "Q10-33-1⑩" was possibly due to self-incompatibility. In the transcriptomic files, 22 potential stigma S genes and 8 potential pollen S genes were found out.


Subject(s)
Chrysanthemum/genetics , Plant Infertility/genetics , Pollination/genetics , Self-Incompatibility in Flowering Plants/genetics , Chrysanthemum/physiology , Pollen/genetics , Pollen/ultrastructure , Transcriptome
11.
J Colloid Interface Sci ; 307(2): 567-71, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17223123

ABSTRACT

Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing poly(vinyl pyrrolidone) (PVP), Ce(NO(3))(3) x 6H(2)O and ZrOCl(2) x 8H(2)O. Upon firing the composite fibers at 1000 degrees C, Ce(0.67)Zr(0.33)O(2) fibers with diameters ranging from 0.4 to 2 microm were synthesized. These fibers exhibit strong resistance to sintering. They still have specific surface area around 11.8 m(2)/g after being heated at 1000 degrees C for 6 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...