Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 931
Filter
1.
Article in English | MEDLINE | ID: mdl-38973529

ABSTRACT

BACKGROUND: The objective of antiviral therapy for chronic viral hepatitis B infection (CHB) is to achieve a functional cure. An important viral marker in the serum of patients with CHB is the serum hepatitis B core-related antigen (HBcrAg). However, there is limited research on HBcrAg in juvenile patients with CHB. In this study, we aimed to investigate the correlation between serum HBcrAg and other hepatitis B virus (HBV) markers in children with CHB and its predictive significance for prognosis during antiviral therapy. METHODS: A single-center retrospective study was conducted involving 79 children with CHB, aged between 0 and 16 years. All the children were treated with interferon [or combined nucleos(t)ide analogs] for 48 weeks. HBcrAg, hepatitis B surface antigen (HBsAg), and HBV DNA were measured before treatment, and at 12 and 48 weeks after treatment. The enrolled children were classified into the seroclearance group and the nonseroclearance group based on the therapeutic outcome. RESULTS: HBsAg seroclearance was observed in 28 out of 79 patients and hepatitis B e antigen seroconversion without HBsAg seroclearance was observed in 14 out of 79 patients following the conclusion of the treatment, with baseline HBcrAg titer levels showing no statistical significance in both the seroclearance and nonseroclearance groups (P = 0.277). HBsAg and HBV DNA were positively correlated with HBcrAg in children with CHB (R2 = 0.3289, 0.4388). The area under the receiver operating characteristic curve of the decrease in HBcrAg at 12 weeks of treatment as a predictor of seroclearance at 48 weeks of treatment, exhibited a value of 0.77. CONCLUSION: A decrease in serum HBcrAg levels in children with hepatitis B serves as a prognostic indicator.

2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 426-434, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970517

ABSTRACT

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in overweight and obese children, and its etiology and pathogenesis remain unclear, lacking effective preventive and therapeutic measures. This study aims to explore the association between whole blood copper, zinc, calcium, magnesium and iron levels and NAFLD in overweight and obese children aged 6 to 17 years, providing a scientific basis for the prevention and intervention of early NAFLD in overweight and obese children. METHODS: A cross-sectional study design was used to collect relevant data from overweight and obese children who visited the Hunan Children's Hospital from January 2019 to December 2021 through questionnaire surveys. Fasting blood samples were collected from the subjects, and various indicators such as blood glucose, blood lipid, and mineral elements were detected. All children were divided into an overweight group (n=400) and a NAFLD group (n=202). The NAFLD group was divided into 2 subgroups according to the ALT level: A non-alcoholic fatty liver (NAFL) group and a non-alcoholic steatohepatitis (NASH) group. Logistic regression analysis was used to analyze the association between minerals (copper, zinc, calcium, magnesium, and iron) and NAFLD, NAFL and NASH. RESULTS: A total of 602 subjects were included, of whom 73.6% were male, with a median age of 10 (9, 11) years, and a body mass index (BMI) of 24.9 (22.7, 27.4) kg/m2. The intergroup comparison results showed that compared with the overweight group, the NAFLD group had higher levels of age, BMI, diastolic blood pressure (DBP), systolic blood pressure (SBP), triglyceride (TG), low density lipoprotein (LDL), alanine transaminase (ALT) and aspartate aminotransferase (AST), and lower level of high density lipoprotein (HDL). The NAFL group had higher levels of age, BMI, DBP, SBP, ALT, and AST, and lower levels of HDL compared with the overweight group. The levels of age, BMI, DBP, SBP, TG, LDL, ALT, and AST of NASH were higher than those in the overweight group, while the level of HDL was lower than that in overweight group (all P<0.017). After adjusting for a variety of confounders, the OR of NAFLD for the highest quantile of iron was 1.79 (95% CI 1.07 to 3.00) compared to the lowest quantile, and no significant association was observed between copper, zinc, calcium, and magnesium, and NAFLD. The subgroup analysis of NAFLD showed that the OR for the highest quantile of iron in children with NAFL was 2.21 (95% CI 1.26 to 3.88), while no significant association was observed between iron level and NASH. In addition, no significant associations were observed between copper, zinc, calcium, and magnesium levels and NAFL or NASH. CONCLUSIONS: High iron level increases the risk of NAFLD (more likely NAFL) in overweight and obese children, while copper, zinc, calcium, magnesium, and other elements are not associated with the risk of NAFLD in overweight and obese children.


Subject(s)
Calcium , Copper , Iron , Magnesium , Non-alcoholic Fatty Liver Disease , Overweight , Zinc , Humans , Non-alcoholic Fatty Liver Disease/blood , Child , Copper/blood , Magnesium/blood , Zinc/blood , Cross-Sectional Studies , Male , Female , Adolescent , Overweight/blood , Overweight/complications , Iron/blood , Calcium/blood , Pediatric Obesity/blood , Pediatric Obesity/complications
3.
Cell Death Discov ; 10(1): 318, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987565

ABSTRACT

Cancer immunotherapy harnesses the body's immune system to combat malignancies, building upon an understanding of tumor immunosurveillance and immune evasion mechanisms. This therapeutic approach reactivates anti-tumor immune responses and can be categorized into active, passive, and combined immunization strategies. Active immunotherapy engages the immune system to recognize and attack tumor cells by leveraging host immunity with cytokine supplementation or vaccination. Conversely, passive immunotherapy employs exogenous agents, such as monoclonal antibodies (anti-CTLA4, anti-PD1, anti-PD-L1) or adoptive cell transfers (ACT) with genetically engineered chimeric antigen receptor (CAR) T or NK cells, to exert anti-tumor effects. Over the past decades, CAR-T cell therapies have gained significant traction in oncological treatment, offering hope through their targeted approach. However, the potential adverse effects associated with CAR-T cells, including cytokine release syndrome (CRS), off-tumor toxicity, and neurotoxicity, warrant careful consideration. Recently, CAR-NK cell therapy has emerged as a promising alternative in the landscape of tumor immunotherapy, distinguished by its innate advantages over CAR-T cell modalities. In this review, we will synthesize the latest research and clinical advancements in CAR-NK cell therapies. We will elucidate the therapeutic benefits of employing CAR-NK cells in oncology and critically examine the developmental bottlenecks impeding their broader application. Our discussion aims to provide a comprehensive overview of the current status and future potential of CAR-NK cells in cancer immunotherapy.

5.
Article in English | MEDLINE | ID: mdl-38982896

ABSTRACT

BACKGROUND: Skeletal muscle injury is one of the most common sports injuries; if not properly treated or not effective rehabilitation treatment after injury, it can be transformed into chronic cumulative injury. Curcumin, an herbal ingredient, has been found to promote skeletal muscle injury repair and regeneration. The Wnt5a pathway is related to the expression of myogenic regulatory factors, and Ca2+ promotes the differentiation and fusion process of myoblasts. This study explored the effect and mechanism of curcumin on myoblast differentiation during the repair and regeneration of injured skeletal muscle and its relationship with the Wnt5a pathway and Ca2+ channel. METHODS: Myogenic differentiation of C2C12 cells was induced with 2% horse serum, and a mouse (male, 10 weeks old) model of acute skeletal muscle injury was established using cardiotoxin (20 µL). In addition, we constructed a Wnt5a knockdown C2C12 cell model and a Wnt5a knockout mouse model. Besides, curcumin was added to the cell culture solution (80 mg/L) and fed to the mice (50 mg/kg). Fluorescence microscopy was used to determine the concentration of Ca2+. Western blot and RT-qPCR were used to detect the protein and mRNA levels of Wnt5a, CaN, NFAT2, MyoD, Myf5, Pax7, and Myogenin. The expression levels of MyoD, Myf5, Myogenin, MHC, Desmin, and NFAT2 were detected using immunofluorescence techniques. In addition, MyoD expression was observed using immunohistochemistry, and morphological changes in mouse muscle tissue were observed using HE staining. RESULTS: During myoblast differentiation and muscle regeneration, Wnt5a expression was upregulated (P < 0.001) and the Wnt5a signalling pathway was activated. Wnt5a overexpression promoted the expression of MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.05), and conversely, knockdown of Wnt5a inhibited their expression (P < 0.001). The Wnt5a pathway mediated the opening of Ca2+ channels, regulated the expression levels of CaN, NFAT2, MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.01) and promoted the differentiation of C2C12 myoblasts and the repair and regeneration of injured skeletal muscle. The expression of Wnt5a, CaN, NFAT2, MyoD, Myogenin, Myf5, and MHC in C2C12 myoblast was significantly increased after curcumin intervention (P < 0.05); however, their expression decreased significantly after knocking down Wnt5a on the basis of curcumin intervention (P < 0.05). Similarly, in Wnt5a knockout mice, the promotion of muscle regeneration by curcumin was significantly attenuated. CONCLUSIONS: Curcumin can activate the Wnt5a signalling pathway and mediate the opening of Ca2+ channels to accelerate the myogenic differentiation of C2C12 cells and the repair and regeneration of injured skeletal muscle.

6.
Front Endocrinol (Lausanne) ; 15: 1378645, 2024.
Article in English | MEDLINE | ID: mdl-39027467

ABSTRACT

Objective: Hyperuricaemia and gout are common metabolic disorders. However, the causal relationships between blood metabolites and serum urate levels, as well as gout, remain unclear. A systematic evaluation of the causal connections between blood metabolites, hyperuricemia, and gout could enhance early screening and prevention of hyperuricemia and gout in clinical settings, providing novel insights and approaches for clinical treatment. Methods: In this study, we employed a bidirectional two-sample Mendelian randomization analysis utilizing data from a genome-wide association study involving 7,286 participants, encompassing 486 blood metabolites. Serum urate and gout data were sourced from the Chronic Kidney Disease Genetics consortium, including 288,649 participants for serum urate and 9,819 African American and 753,994 European individuals for gout. Initially, LDSC methodology was applied to identify blood metabolites with a genetic relationship to serum urate and gout. Subsequently, inverse-variance weighting was employed as the primary analysis method, with a series of sensitivity and pleiotropy analyses conducted to assess the robustness of the results. Results: Following LDSC, 133 blood metabolites exhibited a potential genetic relationship with serum urate and gout. In the primary Mendelian randomization analysis using inverse-variance weighting, 19 blood metabolites were recognized as potentially influencing serum urate levels and gout. Subsequently, the IVW p-values of potential metabolites were corrected using the false discovery rate method. We find leucine (IVW P FDR = 0.00004), N-acetylornithine (IVW P FDR = 0.0295), N1-methyl-3-pyridone-4-carboxamide (IVW P FDR = 0.0295), and succinyl carnitine (IVW P FDR = 0.00004) were identified as significant risk factors for elevated serum urate levels. Additionally, 1-oleoylglycerol (IVW P FDR = 0.0007) may lead to a substantial increase in the risk of gout. Succinyl carnitine exhibited acceptable weak heterogeneity, and the results for other blood metabolites remained robust after sensitivity, heterogeneity, and pleiotropy testing. We conducted an enrichment analysis on potential blood metabolites, followed by a metabolic pathway analysis revealing four pathways associated with serum urate levels. Conclusion: The identified causal relationships between these metabolites and serum urate and gout offer a novel perspective, providing new mechanistic insights into serum urate levels and gout.


Subject(s)
Genome-Wide Association Study , Gout , Hyperuricemia , Mendelian Randomization Analysis , Metabolic Networks and Pathways , Uric Acid , Humans , Gout/genetics , Gout/blood , Gout/epidemiology , Uric Acid/blood , Metabolic Networks and Pathways/genetics , Hyperuricemia/blood , Hyperuricemia/genetics , Hyperuricemia/epidemiology , Polymorphism, Single Nucleotide , Female , Male
7.
Bioinformatics ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018178

ABSTRACT

MOTIVATION: Understanding single-cell expression variability (scEV) or gene expression noise among cells of the same type and state is crucial for delineating population-level cellular function. While epigenetic mechanisms are widely implicated in gene expression regulation, a definitive link between chromatin accessibility and scEV remains elusive. Recent advances in single-cell techniques enable the study of single-cell multiomics data that include the simultaneous measurement of scATAC-seq and scRNA-seq within individual cells, presenting an unprecedented opportunity to address this gap. RESULTS: This paper introduces an innovative testing pipeline to investigate the association between chromatin accessibility and scEV. With single-cell multiomics data of scATAC-seq and scRNA-seq, the pipeline hinges on comparing the prediction performance of scATAC-seq data on gene expression levels between highly variable genes (HVGs) and non-highly variable genes (non-HVGs). Applying this pipeline to paired scATAC-seq and scRNA-seq data from human hematopoietic stem and progenitor cells, we observed a significantly superior prediction performance of scATAC-seq data for HVGs compared to non-HVGs. Notably, there was substantial overlap between well-predicted genes and HVGs. The gene pathways enriched from well-predicted genes are highly pertinent to cell type-specific functions. Our findings support the notion that scEV largely stems from cell-to-cell variability in chromatin accessibility, providing compelling evidence for the epigenetic regulation of scEV and offering promising avenues for investigating gene regulation mechanisms at the single-cell level. AVAILABILITY: The source code and data used in this paper can be found at https://github.com/SiweiCui/EpigeneticControlOfSingle-CellExpressionVariability. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Sci Rep ; 14(1): 14584, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918441

ABSTRACT

PTBP1 is an oncogene that regulates the splicing of precursor mRNA. However, the relationship between PTBP1 expression and gene methylation, cancer prognosis, and tumor microenvironment remains unclear. The expression profiles of PTBP1 across various cancers were derived from the TCGA, as well as the GTEx and CGGA databases. The CGGA mRNA_325, CGGA mRNA_301, and CGGA mRNA_693 datasets were utilized as validation cohorts. Immune cell infiltration scores were approximated using the TIMER 2.0 tool. Functional enrichment analysis for groups with high and low PTBP1 expression was conducted using Gene Set Enrichment Analysis (GSEA). Methylation data were predominantly sourced from the SMART and Mexpress databases. Linked-omics analysis was employed to perform functional enrichment analysis of genes related to PTBP1 methylation, as well as to conduct protein functional enrichment analysis. Single-cell transcriptome analysis and spatial transcriptome analysis were carried out using Seurat version 4.10. Compared to normal tissues, PTBP1 is significantly overexpressed and hypomethylated in various cancers. It is implicated in prognosis, immune cell infiltration, immune checkpoint expression, genomic variation, tumor neoantigen load, and tumor mutational burden across a spectrum of cancers, with particularly notable effects in low-grade gliomas. In the context of gliomas, PTBP1 expression correlates with WHO grade and IDH1 mutation status. PTBP1 expression and methylation play an important role in a variety of cancers. PTBP1 can be used as a marker of inflammation, progression and prognosis in gliomas.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Glioma , Heterogeneous-Nuclear Ribonucleoproteins , Polypyrimidine Tract-Binding Protein , Tumor Microenvironment , Humans , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Prognosis , Biomarkers, Tumor/genetics , Glioma/genetics , Glioma/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , DNA Methylation , Gene Expression Profiling , Inflammation/genetics , Transcriptome , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Disease Progression , Multiomics
9.
J Agric Food Chem ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912665

ABSTRACT

To discover novel natural product-based insecticides, a series of (+)-nootkatone-based amine derivatives 3a-t were prepared and evaluated for their insecticidal activities against Mythimna separata Walker, Myzus persicae Sulzer, and Plutella xylostella Linnaeus. Insecticidal assays showed that most of the title (+)-nootkatone derivatives exhibited stronger insecticidal activities against three insect pests than the precursor (+)-nootkatone after the introduction of amine groups on the parent (+)-nootkatone. Compounds 3a, 3d, 3h, 3m, 3n, 3p, and 3r displayed more promising growth inhibitory (GI) effect against M. separata than the commercially available botanical insecticide toosendanin. Compound 3o exhibited the most potent aphicidal activity with an LD50 value of 0.011 µg/larvae, which was 2.09-fold higher than the positive control rotenone. Additionally, compounds 3g and 3n showed more promising larvicidal activity against P. xylostella with LC50 values of 260 and 230 mg/L, respectively, superior to that of rotenone (460 mg/L). Moreover, derivatives 3g and 3n exhibited better control efficacy toward P. xylostella than rotenone under greenhouse conditions. Preliminary mechanistic studies revealed that derivative 3n could inhibit the activity of glutathione S-transferase (GST) in P. xylostella and thus exerted larvicidal activity, and molecular docking further demonstrated that 3n could interact well with some amino acid residues of GST. Finally, the toxicity assay suggested that derivatives 3g and 3n were relatively less toxic to nontarget organisms. These findings will provide insights into the development of (+)-nootkatone derivatives as green pesticides.

10.
ACS Sens ; 9(6): 2907-2914, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38759108

ABSTRACT

Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.


Subject(s)
Bionics , Touch , Wearable Electronic Devices , Humans , Electrodes , Electric Power Supplies , Printing, Three-Dimensional , Polyvinyls/chemistry
11.
Angew Chem Int Ed Engl ; 63(29): e202407034, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38708741

ABSTRACT

Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.

12.
Chem Asian J ; 19(14): e202400401, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38725283

ABSTRACT

The detection of specific intracellular microRNAs could be potentially helpful in understanding the underlying mechanisms of cancer metastasis and invasion. MiRNAs are usually present in lower expression levels, especially in early stage of cancer. Here, we proposed a "one-to-more" amplification strategy for miRNA imaging, by virtue of DNA strand displacements with dual-amplification. This approach involves leveraging high-abundance endogenous mRNA as fuel strand to drive cascade reactions between DNA strands for amplification, enabling the monitoring of low-abundance intracellular microRNA155. Notably, in comparison to the traditional "one-to-one" signal triggering mode, our "one-to-more" amplification strategy led to a remarkable 11.8-fold increase in fluorescence signal. Our approach not only demonstrates a high sensitivity and specificity in detecting miR155, but also allows for discrimination of miR155 expression levels in different cell lines. With the advantages of intracellular signal amplification and reduced background signal, this approach holds substantial potential in the early diagnosis of cancer.


Subject(s)
DNA Probes , MicroRNAs , RNA, Messenger , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , RNA, Messenger/metabolism , DNA Probes/chemistry , Nucleic Acid Amplification Techniques , Cell Line, Tumor
13.
Phytomedicine ; 130: 155717, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810550

ABSTRACT

Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.


Subject(s)
Cardiomegaly , Drugs, Chinese Herbal , Isoproterenol , Myocytes, Cardiac , Zebrafish , Animals , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Drugs, Chinese Herbal/pharmacology , Myocytes, Cardiac/drug effects , Membrane Potential, Mitochondrial/drug effects , Calcium/metabolism , Rats , Cardiotonic Agents/pharmacology , Cell Line
15.
Article in English | MEDLINE | ID: mdl-38743884

ABSTRACT

Objective: This study aims to evaluate the effect of rehabilitation interventions based on the motive behavioral conversion concept on diabetic foot ulcer patients after artificial dermal transplantation. The focus is on enhancing self-management and quality of life by integrating intrinsic motivation and behavioral changes in postoperative care. It also aims to introduce and clarify this concept for readers less familiar with this approach in diabetic foot ulcer rehabilitation. Methods: The study involved 102 diabetic foot ulcer patients who had undergone artificial dermal transplantation, randomly divided into a control and an observation group. Both groups received standard post-surgical care including antimicrobial agents with alginate supplements and closed negative pressure drainage therapy. The control group underwent conventional rehabilitation, while the observation group received rehabilitation based on motivational behavior transformation. Key evaluation metrics included Visual Analog Scale (VAS) scores, frequency/time of dressing changes, wound healing time, incidence of adverse events, self-care ability scores, and Diabetes-Specific Quality of Life (DSQL) scores, allowing for a comprehensive comparison of outcomes between the two groups. Results: Before the intervention, there was no significant difference in the VAS pain scores between the groups. However, after 7, 10, and 14 days of intervention, the observation group showed a greater reduction in VAS pain scores. The observation group also had shorter dressing change times (12.77 ± 2.18 minutes) and wound healing times (25.77 ± 2.94 days) compared to the control group (16.56 ± 3.25 minutes for dressing change, 27.85 ± 3.26 days for wound healing). There were no significant differences in the frequency of dressing changes or the cumulative incidence of adverse events between the groups. After 6 months, the observation group demonstrated higher self-care ability scores in several domains and lower total DSQL scores, indicating better outcomes in quality of life dimensions. Conclusion: Rehabilitation interventions based on the motive behavioral conversion concept significantly enhanced postoperative recovery, demonstrating potential implications for clinical practices and future research.

16.
J Affect Disord ; 357: 156-162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38703900

ABSTRACT

BACKGROUND: The causal relationship between thyroid function variations within the reference range and cognitive function remains unknown. We aimed to explore this causal relationship using a Mendelian randomization (MR) approach. METHODS: Summary statistics of a thyroid function genome-wide association study (GWAS) were obtained from the ThyroidOmics consortium, including reference range thyroid stimulating hormone (TSH) (N = 54,288) and reference range free thyroxine (FT4) (N = 49,269). GWAS summary statistics on cognitive function were obtained from the Social Science Genetic Association Consortium (SSGAC) and the UK Biobank, including cognitive performance (N = 257,841), prospective memory (N = 152,605), reaction time (N = 459,523), and fluid intelligence (N = 149,051). The primary method used was inverse-variance weighted (IVW), supplemented with weighted median, Mr-Egger regression, and MR-Pleiotropy Residual Sum and Outlier. Several sensitivity analyses were conducted to identify heterogeneity and pleiotropy. RESULTS: An increase in genetically associated TSH within the reference range was suggestively associated with a decline in cognitive performance (ß = -0.019; 95%CI: -0.034 to -0.003; P = 0.017) and significantly associated with longer reaction time (ß = 0.016; 95 % CI: 0.005 to 0.027; P = 0.004). Genetically associated FT4 levels within the reference range had a significant negative relationship with reaction time (ß = -0.030; 95%CI:-0.044 to -0.015; P = 4.85 × 10-5). These findings remained robust in the sensitivity analyses. CONCLUSIONS: Low thyroid function within the reference range may have a negative effect on cognitive function, but further research is needed to fully understand the nature of this relationship. LIMITATIONS: This study only used GWAS data from individuals of European descent, so the findings may not apply to other ethnic groups.


Subject(s)
Cognition , Genome-Wide Association Study , Mendelian Randomization Analysis , Thyrotropin , Thyroxine , Humans , Thyrotropin/blood , Cognition/physiology , Thyroxine/blood , Thyroid Gland/physiology , Reference Values , Thyroid Function Tests , Intelligence/genetics , Intelligence/physiology , Female , Male , Reaction Time/genetics , Memory, Episodic , Polymorphism, Single Nucleotide
17.
Gut Microbes ; 16(1): 2351620, 2024.
Article in English | MEDLINE | ID: mdl-38738766

ABSTRACT

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
18.
J Transl Med ; 22(1): 422, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702814

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm and characterized by desmoplastic matrix. The heterogeneity and crosstalk of tumor microenvironment remain incompletely understood. METHODS: To address this gap, we performed Weighted Gene Co-expression Network Analysis (WGCNA) to identify and construct a cancer associated fibroblasts (CAFs) infiltration biomarker. We also depicted the intercellular communication network and important receptor-ligand complexes using the single-cell transcriptomics analysis of tumor and Adjacent normal tissue. RESULTS: Through the intersection of TCGA DEGs and WGCNA module genes, 784 differential genes related to CAFs infiltration were obtained. After a series of regression analyses, the CAFs score was generated by integrating the expressions of EVA1A, APBA2, LRRTM4, GOLGA8M, BPIFB2, and their corresponding coefficients. In the TCGA-CHOL, GSE89748, and 107,943 cohorts, the high CAFs score group showed unfavorable survival prognosis (p < 0.001, p = 0.0074, p = 0.028, respectively). Additionally, a series of drugs have been predicted to be more sensitive to the high-risk group (p < 0.05). Subsequent to dimension reduction and clustering, thirteen clusters were identified to construct the single-cell atlas. Cell-cell interaction analysis unveiled significant enhancement of signal transduction in tumor tissues, particularly from fibroblasts to malignant cells via diverse pathways. Moreover, SCENIC analysis indicated that HOXA5, WT1, and LHX2 are fibroblast specific motifs. CONCLUSIONS: This study reveals the key role of fibroblasts - oncocytes interaction in the remodeling of the immunosuppressive microenvironment in intrahepatic cholangiocarcinoma. Subsequently, it may trigger cascade activation of downstream signaling pathways such as PI3K-AKT and Notch in tumor, thus initiating tumorigenesis. Targeted drugs aimed at disrupting fibroblasts-tumor cell interaction, along with associated enrichment pathways, show potential in mitigating the immunosuppressive microenvironment that facilitates tumor progression.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Gene Expression Regulation, Neoplastic , Single-Cell Analysis , Tumor Microenvironment , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Transcriptome/genetics , Gene Expression Profiling , Gene Regulatory Networks , Cell Communication
19.
Nefrologia (Engl Ed) ; 44(2): 139-149, 2024.
Article in English | MEDLINE | ID: mdl-38697694

ABSTRACT

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-ß1 (TGF-ß1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.


Subject(s)
Fibrosis , Losartan , Signal Transduction , Tumor Necrosis Factor-alpha , Losartan/pharmacology , Losartan/therapeutic use , Animals , Signal Transduction/drug effects , Rats , Male , Humans , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Rats, Sprague-Dawley , Kidney/pathology , Kidney/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology
20.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38691893

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Coumarins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Molecular Structure , Structure-Activity Relationship , Humans , Dose-Response Relationship, Drug , Mice , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...