Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(18): e38036, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701251

ABSTRACT

ß-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of ß-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent ß-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of ß-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of ß-thalassemia diseases.


Subject(s)
Gene Editing , Genetic Therapy , beta-Thalassemia , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Humans , Gene Editing/methods , Genetic Therapy/methods , CRISPR-Cas Systems , Transcription Activator-Like Effector Nucleases/genetics , Zinc Finger Nucleases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...