Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.615
Filter
1.
Int J Biol Macromol ; : 132635, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797295

ABSTRACT

Lignin, as a natural polyphenol, displays anti-oxidant activity by trapping and binding free radicals through its free phenolic hydroxyl groups. However, the most accessible form, industrial lignins, generally has low phenolic hydroxyl content, which severely limits their application value and scenarios. Herein, we showed that potassium-glycerate deep eutectic solvent (PG-DES) treatment can be combined with laccase oxidation to afford prepared high antioxidant lignin nanoparticles (HA-LNPs) with notably improved anti-oxidant activities benefiting from both the enhanced phenolic hydroxyl content 170.8 % and reduced average particle size (59.0 nm). At concentrations as low as 60 µg/mL, HA-LNPs showed favorable effects in promoting collagen formation. When HA-LNPs were used as an active ingredient in the anti-aging mask formulation, the reactive oxygen species (ROS) scavenging activity of mask samples containing 0.4 % HA-LNPs reached 37.2 %. The data suggest great promise of HA-LNPs as a natural antioxidant for formulating in anti-aging skin care products.

2.
Water Res ; 258: 121774, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772316

ABSTRACT

Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.

3.
Int J Biol Macromol ; : 132435, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759856

ABSTRACT

The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.

5.
Toxicon ; 244: 107773, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795848

ABSTRACT

Sophora flavescens Aiton, a traditional Chinese medicine that was supposed to predominantly play an anti-inflammatory role, has been used to treat multiple diseases, including cancer, for over two thousand years. Recently, it has attracted increasing attention due to the anti-tumor properties of Oxymatrine, one of the most active alkaloids extracted from S. flavescens. This study aims to explore it's anti-tumor effects in non-small cell lung cancer (NSCLC) and the underlying mechanisms. We first investigated the effects of oxymatrine on cell apoptosis in lung cancer cell lines A549 and PC9 as well as explored related genes in regulating the apoptosis by transcriptome analysis. Subsequently, to further study the role of TRIM46, we constructed two types of TRIM46 over-expression cells (A549TRIM46+ and PC9TRIM46+ cells) and then investigated the effect of TRIM46 on oxymatrine-induced apoptosis. Moreover, we explored the effect of TRIM46 on downstream signaling pathways. Transcriptome analysis suggested that shared differentially expressed genes (DEGs) in A549 and PC9 cells treated with oxymatrine were CACNA1I, PADI2, and TRIM46. According to TCGA database analysis, the abundance of TRIM46 expression was higher than CACNA1I, and PADI2 in lung cancer tissues, then was selected as the final DEG for subsequent studies. We observed that oxymatrine resulted in down-expression of TRIM46 as well as induced the apoptosis of the cancer cells in a dose- and time-dependent manner. Meanwhile, we found that apoptosis induced by oxymatrine was inhibited by over-expressing TRIM46. Furthermore, our study indicated that the NF-κB signaling pathway was involved in apoptosis suppressed by TRIM46. We conclude that TRIM46 is the direct target of oxymatrine to induce anti-tumor apoptosis and may activate the downstream NF-κB signaling pathway.

6.
Chem Commun (Camb) ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780308

ABSTRACT

In this study, a benzoselenadiazole- and pyridine-bifunctionalized hydrogen-bonded arylamide foldamer was synthesized. A co-crystallization experiment with 1,4-diiodotetrafluorobenzene showed that a new type of supramolecular double helices, which were induced by three orthogonal interactions, namely, three-center hydrogen bonding (O⋯H⋯O), I⋯N halogen bonding and Se⋯N chalcogen bonding, have been constructed in the solid state. This work presents a novel instance of multiple non-covalent interactions that work together to construct supramolecular architectures.

7.
Nat Commun ; 15(1): 4228, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762498

ABSTRACT

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Subject(s)
Brain , Ferrets , Imaging, Three-Dimensional , Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Imaging, Three-Dimensional/methods , Mice , Algorithms , Machine Learning , Tomography/methods , Image Processing, Computer-Assisted/methods , Rats , Male
8.
Heliyon ; 10(9): e30424, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765104

ABSTRACT

Stroke is the fifth leading cause of death worldwide, and the functional status of the gut plays a key role in patients' prognosis. Recent publications have explored the gut association with stroke, but few articles have been published that specifically address a comprehensive bibliometric analysis of the gut microbiota and its association with stroke. To address this gap, we used bibliometric methods to examine the landscape of research concerning the gut and stroke over approximately two decades, utilizing the Web of Science Core Collection (WoSCC). On November 1, 2022, a search was conducted for English-language articles published between 2002 and 2022, with only including original articles. Visual and statistical analyses were performed using CiteSpace, VOSviewer, and Bibliometrix 4.1.0 Package. After screening relevant articles, the results revealed that the number of articles published in this field has progressively increased during the last two decades. In particular, the total number of publications rapidly increased year by year from 2014. Among them, China ranked first in the world with a total of 227 publications. Authorship analysis highlighted Wang Z as the most prolific author, with 18 publications and an H-index of 14, highlighting significant contributions to this field. Meanwhile, the Southern Medical University of China was identified as the most productive institution. Moreover, analysis of keywords revealed that 'cerebral ischemia', 'intestinal microbiota', 'gut microbiota', and 'trimethylamine N-oxide' were popular topics searched, and research on the relationship between stroke and the gut continues to be a research hotspot. In summary, this study presents an overview of the progress and emerging trends in research on the relationship between stroke and gut health over the past two decades, providing a valuable resource for researchers aiming to understand the current state of the field and identify potential directions for future studies.

9.
Pediatr Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745029

ABSTRACT

BACKGROUND: Early intervention and diagnosis of Metabolic Syndrome (MetS) are crucial for preventing adult cardiovascular disease. However, the optimal indicator for identifying MetS in adolescent remains controversial. METHODS: In total,1408 Chinese adolescents and 3550 American adolescents aged 12-17 years were included. MetS was defined according to the modified version for adolescents based on Adult Treatment Panel III (NCEP-ATP III) criteria. Areas under the curve (AUC) and corresponding 95% confidence interval (95% CI) of 8 anthropometric/metabolic indexes, such as waist circumference (WC), body mass index (BMI), a body shape index (ABSI), waist triglyceride index (WTI), were calculated to illustrate their ability to differentiate MetS. Sensitivity analysis using the other MetS criteria was performed. RESULTS: Under the modified NCEP-ATP III criteria, WTI had the best discriminating ability in overall adolescents, with AUC of 0.922 (95% CI: 0.900-0.945) in Chinese and 0.959 (95% CI: 0.949-0.969) in American. In contrast, ABSI had the lowest AUCs. Results of sensitivity analysis were generally consistent for the whole Chinese and American population, with the AUC for WC being the highest under some criteria, but it was not statistically different from that of WTI. CONCLUSIONS: WTI had relatively high discriminatory power for MetS detection in Chinese and American adolescents, but the performance of ABSI was poor. IMPACT: While many studies have compared the discriminatory power of some anthropometric indicators for MetS, there are few focused on pediatrics. The current study is the first to compare the discriminating ability of anthropometric/metabolic indicators (WC, BMI, TMI, ABSI, WHtR, VAI, WTI, and TyG) for MetS in adolescents. WTI remains the optimal indicator in screening for MetS in adolescents. WC was also a simple and reliable indicator when screening for MetS in adolescents, but the performance of ABSI was poor. This study provides a theoretical basis for the early identification of MetS in adolescents by adopting effective indicators.

10.
Brain Res ; 1839: 148910, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604557

ABSTRACT

BACKGROUND: We have reported neuro-inflammation is involved in radicular pain by enhancing the efficiency of pain synaptic transmission in spinal level. Recently, peers' studies have confirmed that magnesium deficiency leads to neuro-inflammation, thus contributes to memory and emotional deficits and pain hypersensitivity in antineoplastic agents treated rats. In this study, we explore the effect of oral application of magnesium-L-threonate (L-TAMS) in radicular pain induced by lumbar disc herniation (LDH) of rats and the possible mechanisms. METHODS: Rat model of LDH was induced by autologous nucleus pulposus (NP) implantation. Mechanical and thermal pain thresholds were assessed by von Frey filaments and hotplate test respectively. L-TAMS was applied from drinking water at dosage of 604 mg/kg/day from 2 day before NP implantation and until the end of the experiment. Free Mg2+ content in serum and cerebrospinal fluid (CSF) was measured by calmagite chromometry. Synaptic transmission efficiency was determined by C-fiber evoked field potentials recorded by electrophysiologic recording in vivo. The activation of microglia in spinal dorsal horn was displayed by immunofluorescence staining and western blotting. The expressions of pro-inflammatory cytokines and glutamic N-methyl-D-aspartate receptor (NMDAR) subunits (NR2A, NR2B) were assessed by western blotting and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS: NP implantation induced mechanical allodynia and thermal hyperalgesia, accompanied by decreased Mg2+ concentration in serum and CSF which were both obscured by oral application of L-TAMS. L-TAMS inhibited spinal microglia activation and pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) expression of rats with NP. L-TAMS decreased C-fiber evoked potentials and NR2B protein level in rats with NP, which were rescued by extra intrathecal delivery of TNF-α or IL-6 or IL-1ß. CONCLUSIONS: Oral application of L-TAMS alleviates radicular pain by inhibiting neuro-inflammation dependent central sensitization of rats.

11.
Front Bioeng Biotechnol ; 12: 1337808, 2024.
Article in English | MEDLINE | ID: mdl-38681963

ABSTRACT

Introduction: Magnetic Resonance Imaging (MRI) is essential in diagnosing cervical spondylosis, providing detailed visualization of osseous and soft tissue structures in the cervical spine. However, manual measurements hinder the assessment of cervical spine sagittal balance, leading to time-consuming and error-prone processes. This study presents the Pyramid DBSCAN Simple Linear Iterative Cluster (PDB-SLIC), an automated segmentation algorithm for vertebral bodies in T2-weighted MR images, aiming to streamline sagittal balance assessment for spinal surgeons. Method: PDB-SLIC combines the SLIC superpixel segmentation algorithm with DBSCAN clustering and underwent rigorous testing using an extensive dataset of T2-weighted mid-sagittal MR images from 4,258 patients across ten hospitals in China. The efficacy of PDB-SLIC was compared against other algorithms and networks in terms of superpixel segmentation quality and vertebral body segmentation accuracy. Validation included a comparative analysis of manual and automated measurements of cervical sagittal parameters and scrutiny of PDB-SLIC's measurement stability across diverse hospital settings and MR scanning machines. Result: PDB-SLIC outperforms other algorithms in vertebral body segmentation quality, with high accuracy, recall, and Jaccard index. Minimal error deviation was observed compared to manual measurements, with correlation coefficients exceeding 95%. PDB-SLIC demonstrated commendable performance in processing cervical spine T2-weighted MR images from various hospital settings, MRI machines, and patient demographics. Discussion: The PDB-SLIC algorithm emerges as an accurate, objective, and efficient tool for evaluating cervical spine sagittal balance, providing valuable assistance to spinal surgeons in preoperative assessment, surgical strategy formulation, and prognostic inference. Additionally, it facilitates comprehensive measurement of sagittal balance parameters across diverse patient cohorts, contributing to the establishment of normative standards for cervical spine MR imaging.

13.
Expert Opin Pharmacother ; : 1-14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660817

ABSTRACT

INTRODUCTION: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED: In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION: We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.

14.
Chemistry ; : e202401150, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639722

ABSTRACT

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.

15.
Biomed Opt Express ; 15(4): 2708-2718, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633062

ABSTRACT

The two-photon all-optical physiology system has attracted great interest in deciphering neuronal circuits in vivo, benefiting from its advantages in recording and modulating neuronal activities at single neuron resolutions. However, the interference, or crosstalk, between the imaging and photostimulation beams introduces a significant challenge and may impede the future application of voltage indicators in two-photon all-optical physiology system. Here, we propose the time multiplexed excitation method to distinguish signals from neuronal activities and crosstalks from photostimulation. In our system, the laser pulses of the imaging beam and photostimulation beam are synchronized, and a time delay is introduced into these pulses to separate the fluorescence signal generated by these two beams. We demonstrate the efficacy of our system in eliminating crosstalk signals from photostimulation and evaluate its influence on both genetically encoded calcium indicators (GECIs) and genetically encoded voltage indicators (GEVIs) through in vivo experiments.

16.
PeerJ Comput Sci ; 10: e1944, 2024.
Article in English | MEDLINE | ID: mdl-38660147

ABSTRACT

Electrical impedance tomography (EIT) provides an indirect measure of the physiological state and growth of the maize ear by reconstructing the distribution of electrical impedance. However, the two-dimensional (2D) EIT within the electrode plane finds it challenging to comprehensively represent the spatial distribution of conductivity of the intact maize ear, including the husk, kernels, and cob. Therefore, an effective method for 3D conductivity reconstruction is necessary. In practical applications, fluctuations in the contact impedance of the maize ear occur, particularly with the increase in the number of grids and computational workload during the reconstruction of 3D spatial conductivity. These fluctuations may accentuate the ill-conditioning and nonlinearity of the EIT. To address these challenges, we introduce RFNetEIT, a novel computational framework specifically tailored for the absolute imaging of the three-dimensional electrical impedance of maize ear. This strategy transforms the reconstruction of 3D electrical conductivity into a regression process. Initially, a feature map is extracted from measured boundary voltage via a data reconstruction module, thereby enhancing the correlation among different dimensions. Subsequently, a nonlinear mapping model of the 3D spatial distribution of the boundary voltage and conductivity is established, utilizing the residual network. The performance of the proposed framework is assessed through numerical simulation experiments, acrylic model experiments, and maize ear experiments. Our experimental results indicate that our method yields superior reconstruction performance in terms of root-mean-square error (RMSE), correlation coefficient (CC), structural similarity index (SSIM), and inverse problem-solving time (IPST). Furthermore, the reconstruction experiments on maize ears demonstrate that the method can effectively reconstruct the 3D conductivity distribution.

17.
Theranostics ; 14(6): 2622-2636, 2024.
Article in English | MEDLINE | ID: mdl-38646657

ABSTRACT

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Subject(s)
Busulfan , Ferroptosis , NAD , Sirtuin 2 , Spermatogenesis , Animals , Busulfan/pharmacology , Male , Spermatogenesis/drug effects , Mice , NAD/metabolism , Ferroptosis/drug effects , Sirtuin 2/metabolism , Sirtuin 2/genetics , Disease Models, Animal , Testis/metabolism , Testis/drug effects , Azoospermia/drug therapy , Azoospermia/metabolism , Azoospermia/chemically induced
18.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629569

ABSTRACT

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Subject(s)
Microplastics , Polyethylene , Plastics , Soil , Chlorides , Halogens , Sulfates , Soil Microbiology
19.
Phys Rev Lett ; 132(13): 138401, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613297

ABSTRACT

Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.


Subject(s)
Cell Division , Humans , Morphogenesis
20.
Adv Sci (Weinh) ; : e2401034, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647393

ABSTRACT

High-entropy oxides (HEOs) have garnered significant attention within the realm of rechargeable batteries owing to their distinctive advantages, which encompass diverse structural attributes, customizable compositions, entropy-driven stabilization effects, and remarkable superionic conductivity. Despite the brilliance of HEOs in energy conversion and storage applications, there is still lacking a comprehensive review for both entry-level and experienced researchers, which succinctly encapsulates the present status and the challenges inherent to HEOs, spanning structural features, intrinsic properties, prevalent synthetic methodologies, and diversified applications in rechargeable batteries. Within this review, the endeavor is to distill the structural characteristics, ionic conductivity, and entropy stabilization effects, explore the practical applications of HEOs in the realm of rechargeable batteries (lithium-ion, sodium-ion, and lithium-sulfur batteries), including anode and cathode materials, electrolytes, and electrocatalysts. The review seeks to furnish an overview of the evolving landscape of HEOs-based cell component materials, shedding light on the progress made and the hurdles encountered, as well as serving as the guidance for HEOs compositions design and optimization strategy to enhance the reversible structural stability, electrical properties, and electrochemical performance of rechargeable batteries in the realm of energy storage and conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...