Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 46: 17-29, 2023 04.
Article in English | MEDLINE | ID: mdl-35772713

ABSTRACT

INTRODUCTION: Epidemiological studies have reported an association between exposures to ambient air pollution and respiratory diseases, including chronic obstructive pulmonary disease (COPD). Pneumonitis is a critical driving factor of COPD and exposure to air pollutants (e.g., acrolein) is associated with increased incidence of pneumonitis. OBJECTIVES: Currently available anti-inflammatory therapies provide little benefit against respiratory diseases. To this end, we investigated the preventive role of curcumin against air pollutant-associated pneumonitis and its underlying mechanism. METHODS: A total of 40 subjects was recruited from Chengdu, China which is among the top three cities in terms of respiratory mortality related to air pollution. The participants were randomly provided either placebo or curcumin supplements for 2 weeks and blood samples were collected at the baseline and at the end of the intervention to monitor systemic markers. In our follow up mechanistic study, C57BL/6 mice (n = 40) were randomly allocated into 4 groups: Control group (saline + no acrolein), Curcumin only group (curcumin + no acrolein), Acrolein only group (saline + acrolein), and Acrolein + Curcumin group (curcumin + acrolein). Curcumin was orally administered at 100 mg/kg body weight once a day for 10 days, and then the mice were subjected to nasal instillation of acrolein (5 mg/kg body weight). Twelve hours after single acrolein exposure, all mice were euthanized. RESULTS: Curcumin supplementation, with no noticeable adverse responses, reduced circulating pro-inflammatory cytokines in association with clinical pneumonitis as positive predictive while improving those of anti-inflammatory cytokines. In the pre-clinical study, curcumin reduced pneumonitis manifestations by suppression of intrinsic and extrinsic apoptotic signaling, which is attributed to enhanced redox sensing of Nrf2 and thus sensitized synthesis and restoration of GSH, at least in part, through curcumin-Keap1 conjugation. CONCLUSIONS: Our study collectively suggests that curcumin could provide an effective preventive measure against air pollutant-enhanced pneumonitis and thus COPD.


Subject(s)
Air Pollutants , Curcumin , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Acrolein/pharmacology , Air Pollutants/adverse effects , Air Pollutants/analysis , Apoptosis , Body Weight , Curcumin/adverse effects , Cysteine/adverse effects , Cytokines/adverse effects , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , Models, Animal , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/drug therapy
2.
Acta Pharm Sin B ; 12(10): 3877-3890, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213531

ABSTRACT

Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial-mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.

3.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33893396

ABSTRACT

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Diterpenes/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Phenanthrenes/pharmacology , beta Catenin/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Epoxy Compounds/pharmacology , Heterografts , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , beta Catenin/genetics
4.
Cell Death Dis ; 11(4): 232, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286274

ABSTRACT

Although angiogenesis inhibitors targeting VEGF/VEGFR2 have been applied for tumor therapy, the outcomes are still unsatisfactory. Thus, it is urgent to develop novel angiogenesis inhibitor for cancer therapy from new perspectives. Identification of novel angiogenesis inhibitor from natural products is believed to be one of most promising strategy. In this study, we showed that pristimerin, an active agent isolated from traditional Chinese herbal medicine Celastrus aculeatus Merr, was a novel tumor angiogenesis inhibitor that targeting sonic hedgehog (Shh)/glioma associated oncogene 1 (Gli1) signaling pathway in non-small cell lung cancer (NSCLC). We showed that pristimerin affected both the early- and late-stage of angiogenesis, suggesting by that pristimerin inhibited Shh-induced endothelial cells proliferation, migration, invasion as well as pericytes recruitment to the endothelial tubes, which is critical for the new blood vessel maturation. It also suppressed tube formation, vessel sprouts formation and neovascularization in chicken embryo chorioallantoic membrane (CAM). Moreover, it significantly decreased microvessel density (MVD) and pericyte coverage in NCI-H1299 xenografts, resulting in tumor growth inhibition. Further research revealed that pristimerin suppressed tumor angiogenesis by inhibiting the nucleus distribution of Gli1, leading to inactivation of Shh/Gli1 and its downstream signaling pathway. Taken together, our study showed that pristimerin was a promising novel anti-angiogenic agent for the NSCLC therapy and targeting Shh/Gli1 signaling pathway was an effective approach to suppress tumor angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Hedgehog Proteins/metabolism , Lung Neoplasms/drug therapy , Zinc Finger Protein GLI1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Male , Mice , Mice, Nude , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
5.
Front Microbiol ; 9: 229, 2018.
Article in English | MEDLINE | ID: mdl-29503636

ABSTRACT

Bamboo-eating giant panda (Ailuropoda melanoleuca) is an enigmatic species, which possesses a carnivore-like short and simple gastrointestinal tract (GIT). Despite the remarkable studies on giant panda, its diet adaptability status continues to be a matter of debate. To resolve this puzzle, we investigated the functional potential of the giant panda gut microbiome using shotgun metagenomic sequencing of fecal samples. We also compared our data with similar data from other animal species representing herbivores, carnivores, and omnivores from current and earlier studies. We found that the giant panda hosts a bear-like gut microbiota distinct from those of herbivores indicated by the metabolic potential of the microbiome in the gut of giant pandas and other mammals. Furthermore, the relative abundance of genes involved in cellulose- and hemicellulose-digestion, and enrichment of enzymes associated with pathways of amino acid degradation and biosynthetic reactions in giant pandas echoed a carnivore-like microbiome. Most significantly, the enzyme assay of the giant panda's feces indicated the lowest cellulase and xylanase activity among major herbivores, shown by an in-vitro experimental assay of enzyme activity for cellulose and hemicellulose-degradation. All of our results consistently indicate that the giant panda is not specialized to digest cellulose and hemicellulose from its bamboo diet, making the giant panda a good mammalian model to study the unusual link between the gut microbiome and diet. The increased food intake of the giant pandas might be a strategy to compensate for the gut microbiome functions, highlighting a strong need of conservation of the native bamboo forest both in high- and low-altitude ranges to meet the great demand of bamboo diet of giant pandas.

SELECTION OF CITATIONS
SEARCH DETAIL
...