Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pac Symp Biocomput ; 29: 341-358, 2024.
Article in English | MEDLINE | ID: mdl-38160291

ABSTRACT

Gene imputation and TWAS have become a staple in the genomics medicine discovery space; helping to identify genes whose regulation effects may contribute to disease susceptibility. However, the cohorts on which these methods are built are overwhelmingly of European Ancestry. This means that the unique regulatory variation that exist in non-European populations, specifically African Ancestry populations, may not be included in the current models. Moreover, African Americans are an admixed population, with a mix of European and African segments within their genome. No gene imputation model thus far has incorporated the effect of local ancestry (LA) on gene expression imputation. As such, we created LA-GEM which was trained and tested on a cohort of 60 African American hepatocyte primary cultures. Uniquely, LA-GEM include local ancestry inference in its prediction of gene expression. We compared the performance of LA-GEM to PrediXcan trained the same dataset (with no inclusion of local ancestry) We were able to reliably predict the expression of 2559 genes (1326 in LA-GEM and 1236 in PrediXcan). Of these, 546 genes were unique to LA-GEM, including the CYP3A5 gene which is critical to drug metabolism. We conducted TWAS analysis on two African American clinical cohorts with pharmacogenomics phenotypic information to identity novel gene associations. In our IWPC warfarin cohort, we identified 17 transcriptome-wide significant hits. No gene reached are prespecified significance level in the clopidogrel cohort. We did see suggestive association with RAS3A to P2RY12 Reactivity Units (PRU), a clinical measure of response to anti-platelet therapy. This method demonstrated the need for the incorporation of LA into study in admixed populations.


Subject(s)
Computational Biology , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Computational Biology/methods , Warfarin , Transcriptome , Polymorphism, Single Nucleotide
2.
Am J Hum Genet ; 110(1): 58-70, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608685

ABSTRACT

Expression quantitative locus (eQTL) studies have paved the way in identifying genetic variation impacting gene expression levels. African Americans (AAs) are disproportionately underrepresented in eQTL studies, resulting in a lack of power to identify population-specific regulatory variants especially related to drug response. Specific drugs are known to affect the biosynthesis of drug metabolism enzymes as well as other genes. We used drug perturbation in cultured primary hepatocytes derived from AAs to determine the effect of drug treatment on eQTL mapping and to identify the drug response eQTLs (reQTLs) that show altered effect size following drug treatment. Whole-genome genotyping (Illumina MEGA array) and RNA sequencing were performed on 60 primary hepatocyte cultures after treatment with six drugs (Rifampin, Phenytoin, Carbamazepine, Dexamethasone, Phenobarbital, and Omeprazole) and at baseline (no treatment). eQTLs were mapped by treatment and jointly with Meta-Tissue. We found varying transcriptional changes across different drug treatments and identified Nrf2 as a potential general transcriptional regulator. We jointly mapped eQTLs with gene expression data across all drug treatments and baseline, which increased our power to detect eQTLs by 2.7-fold. We also identified 2,988 reQTLs (eQTLs with altered effect size after drug treatment). reQTLs were more likely to overlap transcription factor binding sites, and we uncovered reQTLs for drug metabolizing genes such as CYP3A5. Our results provide insights into the genetic regulation of gene expression in hepatocytes through drug perturbation and provide insight into SNPs that effect the liver's ability to respond to transcription upregulation.


Subject(s)
Black or African American , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Black or African American/genetics , Gene Expression Regulation , Liver , Gene Expression , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study
3.
BMC Med Res Methodol ; 23(1): 22, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36694118

ABSTRACT

BACKGROUND: The Pooled Cohort Equations (PCEs) are race- and sex-specific Cox proportional hazards (PH)-based models used for 10-year atherosclerotic cardiovascular disease (ASCVD) risk prediction with acceptable discrimination. In recent years, neural network models have gained increasing popularity with their success in image recognition and text classification. Various survival neural network models have been proposed by combining survival analysis and neural network architecture to take advantage of the strengths from both. However, the performance of these survival neural network models compared to each other and to PCEs in ASCVD prediction is unknown. METHODS: In this study, we used 6 cohorts from the Lifetime Risk Pooling Project (with 5 cohorts as training/internal validation and one cohort as external validation) and compared the performance of the PCEs in 10-year ASCVD risk prediction with an all two-way interactions Cox PH model (Cox PH-TWI) and three state-of-the-art neural network survival models including Nnet-survival, Deepsurv, and Cox-nnet. For all the models, we used the same 7 covariates as used in the PCEs. We fitted each of the aforementioned models in white females, white males, black females, and black males, respectively. We evaluated models' internal and external discrimination power and calibration. RESULTS: The training/internal validation sample comprised 23216 individuals. The average age at baseline was 57.8 years old (SD = 9.6); 16% developed ASCVD during average follow-up of 10.50 (SD = 3.02) years. Based on 10 × 10 cross-validation, the method that had the highest C-statistics was Deepsurv (0.7371) for white males, Deepsurv and Cox PH-TWI (0.7972) for white females, PCE (0.6981) for black males, and Deepsurv (0.7886) for black females. In the external validation dataset, Deepsurv (0.7032), Cox-nnet (0.7282), PCE (0.6811), and Deepsurv (0.7316) had the highest C-statistics for white male, white female, black male, and black female population, respectively. Calibration plots showed that in 10 × 10 validation, all models had good calibration in all race and sex groups. In external validation, all models overestimated the risk for 10-year ASCVD. CONCLUSIONS: We demonstrated the use of the state-of-the-art neural network survival models in ASCVD risk prediction. Neural network survival models had similar if not superior discrimination and calibration compared to PCEs.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Male , Female , Middle Aged , Risk Factors , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Atherosclerosis/epidemiology , Neural Networks, Computer , Proportional Hazards Models , Risk Assessment/methods
4.
Pac Symp Biocomput ; 26: 244-255, 2021.
Article in English | MEDLINE | ID: mdl-33691021

ABSTRACT

Epigenetics is a reversible molecular mechanism that plays a critical role in many developmental, adaptive, and disease processes. DNA methylation has been shown to regulate gene expression and the advent of high throughput technologies has made genome-wide DNA methylation analysis possible. We investigated the effect of DNA methylation on eQTL mapping (methylation-adjusted eQTLs), by incorporating DNA methylation as a SNP-based covariate in eQTL mapping in African American derived hepatocytes. We found that the addition of DNA methylation uncovered new eQTLs and eGenes. Previously discovered eQTLs were significantly altered by the addition of DNA methylation data suggesting that methylation may modulate the association of SNPs to gene expression. We found that methylation-adjusted eQTLs that were less significant compared to PC-adjusted eQTLs were enriched in lipoprotein measurements (FDR=0.0040), immune system disorders (FDR = 0.0042), and liver enzyme measurements (FDR=0.047), suggesting that DNA methylation modulates the genetic regulation of these phenotypes. Our methylation-adjusted eQTL analysis also uncovered novel SNP-gene pairs. For example, we found that the SNP, rs1332018, was associated to GSTM3. GSTM3 expression has been linked to Hepatitis B which African Americans suffer from disproportionately. Our methylation-adjusted method adds new understanding to the genetic basis of complex diseases that disproportionally affect African Americans.


Subject(s)
Black or African American , DNA Methylation , Black or African American/genetics , Computational Biology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
PLoS Genet ; 16(4): e1008662, 2020 04.
Article in English | MEDLINE | ID: mdl-32310939

ABSTRACT

African Americans (AAs) are disproportionately affected by metabolic diseases and adverse drug events, with limited publicly available genomic and transcriptomic data to advance the knowledge of the molecular underpinnings or genetic associations to these diseases or drug response phenotypes. To fill this gap, we obtained 60 primary hepatocyte cultures from AA liver donors for genome-wide mapping of expression quantitative trait loci (eQTL) using LAMatrix. We identified 277 eGenes and 19,770 eQTLs, of which 67 eGenes and 7,415 eQTLs are not observed in the Genotype-Tissue Expression Project (GTEx) liver eQTL analysis. Of the eGenes found in GTEx only 25 share the same lead eQTL. These AA-specific eQTLs are less correlated to GTEx eQTLs. in effect sizes and have larger Fst values compared to eQTLs found in both cohorts (overlapping eQTLs). We assessed the overlap between GWAS variants and their tagging variants with AA hepatocyte eQTLs and demonstrated that AA hepatocyte eQTLs can decrease the number of potential causal variants at GWAS loci. Additionally, we identified 75,002 exon QTLs of which 48.8% are not eQTLs in AA hepatocytes. Our analysis provides the first comprehensive characterization of AA hepatocyte eQTLs and highlights the unique discoveries that are made possible due to the increased genetic diversity within the African ancestry genome.


Subject(s)
Black or African American/genetics , Gene Expression/genetics , Hepatocytes/metabolism , Quantitative Trait Loci/genetics , Adaptor Proteins, Signal Transducing/genetics , Alternative Splicing/genetics , Cytochrome P-450 CYP3A/genetics , Exons/genetics , Female , Genetic Predisposition to Disease , Genetics, Medical , Genome, Human , Genome-Wide Association Study , Humans , Liver/cytology , Male , Nerve Tissue Proteins/genetics , Precision Medicine
6.
Clin Pharmacol Ther ; 106(2): 338-349, 2019 08.
Article in English | MEDLINE | ID: mdl-31038731

ABSTRACT

Health disparities exist among minorities in the United States, with differences seen in disease prevalence, mortality, and responses to medications. These differences are multifactorial with genetic variation explaining a portion of this variability. Pharmacogenomics aims to find the effect of genetic variations on drug response, with the goal of optimizing drug therapy and development. Although genome-wide association studies have been useful in unbiasedly surveying the genome for genetic drivers of clinically relevant phenotypes, most of these studies have been conducted in mainly participants of European and Asian descent, contributing to a growing health disparity in precision medicine. Diversity is important to pharmacogenomic studies, and there may be real advantages to the use of these complex genomes in pharmacogenomics. In this review we will outline some of the advantages and confounders of pharmacogenomics in minorities, describe the role of genetic variation in pharmacologic pathways, and highlight a number of population-specific findings.


Subject(s)
Minority Groups , Pharmacogenetics , Pharmacogenomic Variants , Biotransformation/genetics , Health Status Disparities , Humans
7.
Am J Hum Genet ; 104(6): 1097-1115, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31104770

ABSTRACT

Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations.


Subject(s)
Ethnicity/genetics , Gene Expression Regulation , Genetics, Population , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Humans , Linkage Disequilibrium , Models, Genetic , Phenotype
8.
BMC Med Inform Decis Mak ; 19(Suppl 3): 78, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30943974

ABSTRACT

BACKGROUND: This paper presents a portable phenotyping system that is capable of integrating both rule-based and statistical machine learning based approaches. METHODS: Our system utilizes UMLS to extract clinically relevant features from the unstructured text and then facilitates portability across different institutions and data systems by incorporating OHDSI's OMOP Common Data Model (CDM) to standardize necessary data elements. Our system can also store the key components of rule-based systems (e.g., regular expression matches) in the format of OMOP CDM, thus enabling the reuse, adaptation and extension of many existing rule-based clinical NLP systems. We experimented with our system on the corpus from i2b2's Obesity Challenge as a pilot study. RESULTS: Our system facilitates portable phenotyping of obesity and its 15 comorbidities based on the unstructured patient discharge summaries, while achieving a performance that often ranked among the top 10 of the challenge participants. CONCLUSION: Our system of standardization enables a consistent application of numerous rule-based and machine learning based classification techniques downstream across disparate datasets which may originate across different institutions and data systems.


Subject(s)
Information Storage and Retrieval , Machine Learning , Natural Language Processing , Electronic Health Records , Humans , Information Storage and Retrieval/methods , Obesity , Pilot Projects
9.
AMIA Annu Symp Proc ; 2019: 190-199, 2019.
Article in English | MEDLINE | ID: mdl-32308812

ABSTRACT

While natural language processing (NLP) of unstructured clinical narratives holds the potential for patient care and clinical research, portability of NLP approaches across multiple sites remains a major challenge. This study investigated the portability of an NLP system developed initially at the Department of Veterans Affairs (VA) to extract 27 key cardiac concepts from free-text or semi-structured echocardiograms from three academic edical centers: Weill Cornell Medicine, Mayo Clinic and Northwestern Medicine. While the NLP system showed high precision and recall easurements for four target concepts (aortic valve regurgitation, left atrium size at end systole, mitral valve regurgitation, tricuspid valve regurgitation) across all sites, we found moderate or poor results for the remaining concepts and the NLP system performance varied between individual sites.


Subject(s)
Echocardiography , Electronic Health Records , Health Information Interoperability , Heart Valve Diseases/diagnostic imaging , Natural Language Processing , Heart/anatomy & histology , Heart/diagnostic imaging , Heart Valve Diseases/physiopathology , Humans , Narration , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...