Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38965748

ABSTRACT

OBJECTIVE: To investigate the role of the microRNA (miRNA)-669f-5p/deoxycytidylate deaminase (Dctd) axis in sevoflurane inducing cognitive dysfunction in aged mice. METHODS: Sixty-six C57BL/6J mice were used in the experiment model and were randomly divided into the sevoflurane group and the control group. The mice in the sevoflurane group were anesthetised with 3.4% sevoflurane, whereas those in the control group were air-treated for the same period. The study was then performed using bioinformatics sequencing, as well as in vitro and in vivo validation. RESULTS: The mice in the sevoflurane group showed significant cognitive impairments in terms of a decrease in both spatial learning and memory abilities. Experimental doses of miR-669f-5p agonist exhibited no obvious effect on cognitive function following sevoflurane inhalation, but inhibiting the expression of miR-669f-5p could alleviate the impairments. Based on the results of the bioinformatics sequencing, miR-669f-5p/Dctd and the toll-like receptor (TLR) signalling pathway could be the key miRNA, gene and pathway leading to postoperative cognitive dysfunction following sevoflurane inhalation. The aged mice showed significantly increased expression of miR-669f-5p in the hippocampus following sevoflurane inhalation, and upregulating/inhibiting its expression could increase/decrease TLR expression in the hippocampus. Furthermore, miR-669f-5p could reduce the expression of the Dctd gene by binding to its 3'untranslated region. CONCLUSION: The miR-669f-5p/Dctd axis plays an important role in sevoflurane inducing cognitive dysfunction in aged mice, providing a new direction for further development of therapeutic strategies concerning the prevention and treatment of cognitive dysfunction associated with sevoflurane anaesthesia.

2.
J Immunol Res ; 2019: 7264383, 2019.
Article in English | MEDLINE | ID: mdl-30937316

ABSTRACT

AIM: To investigate the protective effects of budesonide against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in a murine model and its underlying mechanism. METHODS: Adult male C57BL/6 mice were divided into three groups: control, ALI, and ALI + budesonide groups. LPS (5 mg/kg) was intratracheally injected to induce ALI in mice. Budesonide (0.5 mg/kg) was intranasally given 1 h before LPS administration in the ALI + budesonide group. Twelve hours after LPS administration, all mice were sacrificed. Hematoxylin-eosin staining and pathological scores were used to evaluate pathological injury. Bronchoalveolar lavage was performed. The numbers of total cells, neutrophils, and macrophages in the bronchoalveolar lavage fluid (BALF) were counted. Enzyme-linked immunosorbent assay was employed to detect the proinflammatory cytokines in BALF and serum, including tumor necrosis factor- (TNF-) α, monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 1ß. The expression of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was detected by western blotting. A lethal dose of LPS (40 mg/kg, intraperitoneally) was injected to evaluate the effects of budesonide on survival rates. RESULTS: Budesonide pretreatment dramatically attenuated pathological injury and reduced pathological scores in mice with ALI. Budesonide pretreatment obviously reduced the numbers of total cells, neutrophils, and macrophages in the BALF of mice with ALI. Additionally, budesonide dramatically reduced TNF-α and MCP-1 expression in the BALF and serum of mice with ALI. Budesonide significantly suppressed NLRP3 and pro-caspase-1 expression in the lung and reduced IL-1ß content in the BALF, indicating that budesonide inhibited the activation of the NLRP3 inflammasome. Furthermore, we found that budesonide improved the survival rates of mice with ALI receiving a lethal dose of LPS. CONCLUSION: Suppression of NLRP3 inflammasome activation in mice via budesonide attenuated lung injury induced by LPS in mice with ALI.


Subject(s)
Acute Lung Injury/prevention & control , Budesonide/administration & dosage , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Acute Lung Injury/chemically induced , Animals , Bronchoalveolar Lavage Fluid/immunology , Budesonide/pharmacology , Caspase 1/genetics , Cytokines , Inflammation , Interleukin-1beta/genetics , Lipopolysaccharides , Lung/drug effects , Lung/immunology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...