Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 16215, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003416

ABSTRACT

The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.


Subject(s)
Aging , Brain-Gut Axis , Cognitive Dysfunction , Gastrointestinal Microbiome , Malus , Polysaccharides , Animals , Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Malus/chemistry , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Aging/drug effects , Brain-Gut Axis/drug effects , Male , Oxidative Stress/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Maze Learning/drug effects , Mice, Inbred C57BL , Intestines/drug effects , Intestines/microbiology , Brain/metabolism , Brain/drug effects
2.
Front Microbiol ; 14: 1304232, 2023.
Article in English | MEDLINE | ID: mdl-38098663

ABSTRACT

Introduction: "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods: In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results: We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion: Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.

3.
Adv Sci (Weinh) ; 10(28): e2302798, 2023 10.
Article in English | MEDLINE | ID: mdl-37616338

ABSTRACT

Post-infectious irritable bowel syndrome (PI-IBS) occurs after acute infectious diarrhea, and dysbiosis can be involved in its pathogenesis. Here, the role of chlorogenic acid (CGA) is investigated, a natural compound with several pharmacological properties, in alleviating PI-IBS in rats. It is elucidated that the gut microbiota plays a key role in PI-IBS pathogenesis and that rectal administration of CGA alleviated PI-IBS by modulating the gut microbiota and its metabolites. CGA supplementation significantly increased fecal Bacteroides acidifaciens abundance and glycine levels. Glycine structurally altered B. acidifaciens extracellular vesicles (EVs) and enriched functional proteins in the EVs; glycine-induced EVs alleviated PI-IBS by reducing inflammation and hypersensitivity of the intestinal viscera and maintaining mucosal barrier function. Moreover, B. acidifaciens EVs are enriched in the brain tissue. Thus, CGA mediates the mitigation of PI-IBS through the gut microbiota and its metabolites. This study proposes a novel mechanism of signal exchange between the gut microenvironment and the host.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Inflammation/complications , Glycine
SELECTION OF CITATIONS
SEARCH DETAIL
...