Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 136(42): 14682-5, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25291430

ABSTRACT

We report enhanced force detection selectivity based on Coulombic interactions through AFM tip modification for probing fine structures of the electric double layer (EDL) in ionic liquids. When AFM tips anchored with alkylthiol molecular layers having end groups with different charge states (e.g., -CH3, -COO(-), and -NH3(+)) are employed, Coulombic interactions between the tip and a specified layering structure are intensified or diminished depending on the polarities of the tip and the layering species. Systematic potential-dependent measurements of force curves with careful inspection of layered features and thickness analysis allows the fine structure of the EDL at the Au(111)-OMIPF6 interface to be resolved at the subionic level. The enhanced force detection selectivity provides a basis for thoroughly understanding the EDL in ionic liquids.

2.
Nanoscale ; 6(21): 12635-43, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25192187

ABSTRACT

Highly efficient and stable photoluminescence (PL) are urgently desired for graphene quantum dots (GQDs) to facilitate their prospective applications as optical materials. Here, we report the facile and straightforward synthesis of alkylated graphene quantum dots (AGQDs) via the solvothermal reaction of propagatively alkylated graphene sheets (PAGenes). In contrast to most GQDs reported so far, the synthesized AGQDs process pH-independent and ultra-bright PL with a relative quantum yield of up to 65%. Structural and chemical composition characterization demonstrated that the synthesized AGQDs are nearly oxygen-defect-free with alkyl groups decorated on edges and basal plane, which may contribute to their greatly improved pH tolerance and high quantum efficiency. The photocatalytic performance of AGQDs-P25 nanocomposites was evaluated by the degradation of Rhodamine B under visible light. The photocatalytic rate is ca. 5.9 times higher than that of pure P25, indicating that AGQDs could harness the visible spectrum of sunlight for energy conversion or environmental therapy.

3.
Chem Commun (Camb) ; 48(4): 582-4, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22109542

ABSTRACT

High quality AFM force curves are presented with detailed potential dependent layering behaviors of the ionic liquid molecules, from which charged interior and neutral exterior layers are distinguished. The electric double layer is confined within the interior layers of one to two molecular size within the potential range of up to 1 V negative of the PZC.

SELECTION OF CITATIONS
SEARCH DETAIL
...