Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 139: 473-482, 2024 May.
Article in English | MEDLINE | ID: mdl-38105070

ABSTRACT

Microplastic pollution has become one of the most concerned focuses in the world. Among many treatment methods, photocatalysis is considered to be one of the most environmentally friendly methods. In this work, the photodegradation behavior of polyamide microplastics is studied by using polyamide 6 PA6) as model microplastics and FeCl3 as catalyst. It is hoped that the PA6 fiber can be effectively degraded by utilizing the strong oxidizing active species that can be produced after FeCl3 is irradiated in water. The results shows that PA6 fiber can be almost completely degraded after 10 days of irradiation in FeCl3 aqueous solution, indicating that it is promising to use this new method to solve the problem of PA6 type microplastics. In addition, the chain scission mechanism and degradation process of PA6 are analyzed in detail by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS), which provides a new insight for the study of polymer degradation mechanism.


Subject(s)
Nylons , Plastics , Microplastics , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Metals
2.
Chemosphere ; 299: 134375, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35314181

ABSTRACT

As some of the most promising alternatives to traditional non-degradable materials, photodegradable materials have advantages of environmental benignity and rapid degradation under simple conditions. In this work, nontoxic TiO2 and cost-effective g-C3N4 have been compounded in a weight of 9:1 to form a photocatalytic additive with high activity. A 25 wt% loading of this photocatalytic additive has been incorporated into the polyacrylonitrile (PAN) by centrifugal electrospinning to prepare an abiotic degradable PAN material. Our results showed that the PAN chain could be almost fully degraded within 90 h in an aqueous medium under simulated sunlight in the absence of microorganisms. Product analysis implied that degradation of the PAN chain mainly involved the breaking of -CN and C-C bonds by radicals, followed by oxidation of terminal groups to carboxyl and gradual mineralization to CO2 and H2O. This design strategy may provide new insight for the production and degradation mechanism of photodegradable polymer.


Subject(s)
Lighting , Sunlight , Acrylic Resins , Catalysis , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...