Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 1085665, 2022.
Article in English | MEDLINE | ID: mdl-36569316

ABSTRACT

Molecular generation (MG) via machine learning (ML) has speeded drug structural optimization, especially for targets with a large amount of reported bioactivity data. However, molecular generation for structural optimization is often powerless for new targets. DNA-encoded library (DEL) can generate systematic, target-specific activity data, including novel targets with few or unknown activity data. Therefore, this study aims to overcome the limitation of molecular generation in the structural optimization for the new target. Firstly, we generated molecules using the structure-affinity data (2.96 million samples) for 3C-like protease (3CLpro) from our own-built DEL platform to get rid of using public databases (e.g., CHEMBL and ZINC). Subsequently, to analyze the effect of transfer learning on the positive rate of the molecule generation model, molecular docking and affinity model based on DEL data were applied to explore the enhanced impact of transfer learning on molecule generation. In addition, the generated molecules are subjected to multiple filtering, including physicochemical properties, drug-like properties, and pharmacophore evaluation, molecular docking to determine the molecules for further study and verified by molecular dynamics simulation.

2.
Front Chem ; 10: 982539, 2022.
Article in English | MEDLINE | ID: mdl-35958238

ABSTRACT

Drug discovery has entered a new period of vigorous development with advanced technologies such as DNA-encoded library (DEL) and artificial intelligence (AI). The previous DEL-AI combination has been successfully applied in the drug discovery of classical kinase and receptor targets mainly based on the known scaffold. So far, there is no report of the DEL-AI combination on inhibitors targeting protein-protein interaction, including those undruggable targets with few or unknown active scaffolds. Here, we applied DEL technology on the T cell immunoglobulin and ITIM domain (TIGIT) target, resulting in the unique hit compound 1 (IC50 = 20.7 µM). Based on the screening data from DEL and hit derivatives a1-a34, a machine learning (ML) modeling process was established to address the challenge of poor sample distribution uniformity, which is also frequently encountered in DEL screening on new targets. In the end, the established ML model achieved a satisfactory hit rate of about 75% for derivatives in a high-scored area.

3.
Neural Plast ; 2017: 8283075, 2017.
Article in English | MEDLINE | ID: mdl-28250994

ABSTRACT

The zebrafish has become an established model organism for the study of hearing and balance systems in the past two decades. The classical approach to examine hair cells is to use dye to conduct selective staining, which shows the number and morphology of hair cells but does not reveal their function. Startle response is a behavior closely related to the auditory function of hair cells; therefore it can be used to measure the function of hair cells. In this study, we developed a device to measure the startle response of zebrafish larvae. By applying various levels of stimulus, it showed that the system can discern a 10 dB difference. The hair cell in zebrafish can regenerate after damage due to noise exposure or drug treatment. With this device, we measured the startle response of zebrafish larvae during and after drug treatment. The results show a similar trend to the classical hair cell staining method. The startle response was reduced with drug treatment and recovered after removal of the drug. Together it demonstrated the capability of this behavioral assay in evaluating the hair cell functions of fish larvae and its potential as a high-throughput screening tool for auditory-related gene and drug discovery.


Subject(s)
Behavior, Animal , Hair Cells, Auditory, Inner/physiology , Reflex, Startle , Regeneration , Acoustic Stimulation/methods , Animals , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/pathology , Larva , Neomycin/administration & dosage , Reflex, Startle/drug effects , Zebrafish
4.
J Microbiol Biotechnol ; 27(6): 1098-1105, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28297751

ABSTRACT

Vesicular stomatitis virus G glycoprotein (VSV-G) has been widely used for pseudotyping retroviral, lentiviral, and artificial viral vectors. The objective of this study was to establish a potential approach for large-scale production of VSV-G. To this end, VSV-G was cloned with an N-terminal His-tag into Pichia pastoris expression vector pPIC3.5K. Three clones (Muts) containing the VSV-G expression cassette were identified by PCR. All clones proliferated normally in expansion medium, whereas the proliferation was reduced significantly under induction conditions. VSV-G protein was detected in cell lysates by western blot analysis, and the highest expression level was observed at 96 h post induction. VSV-G could also be obtained from the condition medium of yeast protoplasts. Furthermore, VSV-G could be incorporated into Ad293 cells and was able to induce cell fusion, leading to the transfer of cytoplasmic protein. Finally, VSV-G-mediated DNA transfection was assayed by flow cytometry and luciferase measurement. Incubation of VSV-G lysate with the pGL3-control DNA complex increased the luciferase activity in Ad293 and HeLa cells by about 3-fold. Likewise, incubation of VSV-G lysate with the pCMV-DsRed DNA complex improved the transfection efficiency into Ad293 by 10% and into HeLa cells by about 1-fold. In conclusion, these results demonstrate that VSV-G could be produced from P. pastoris with biofunctionalities, demonstrating that large-scale production of the viral glycoprotein is feasible.


Subject(s)
DNA , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Pichia/genetics , Transfection , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/genetics , Animals , Cell Count , Gene Expression , Genetic Vectors , HeLa Cells , Humans , Pichia/chemistry , Pichia/growth & development , Protoplasts , Recombinant Proteins/biosynthesis , Transfection/methods
5.
Appl Biochem Biotechnol ; 181(2): 748-761, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27665615

ABSTRACT

The objective of this study was to formulate a novel gene delivery system based on the erythrocyte ghost (EG) integrated with fusogenic viral glycoprotein vesicular stomatitis virus glycoprotein G (VSV-G). VSV-G proteins were harvested as condition medium of Ad293 cells carrying a VSV-G transgene and then incorporated into EG. Plasmid DNA was condensed by various transfection reagents. A luciferase expression construct (pGL3-control) and a DsRed expression cassette (pCMV-DsRed) were used to evaluate the delivery efficiency of DNA/EG/VSV-G complexes. VSV-G proteins could be incorporated into EG in static incubation under acidic conditions as evidenced by the Western blot analysis. Condensed plasmid DNA was bound mostly to the outer surface of EG, which could be detected by electromicroscopy and measured by electrophoresis. EG/VSV-G complexes stimulated the delivery of pGL3-control into Ad293 cells significantly with the luciferase activity increased about 4-fold as compared to that of the control. The delivery of pCMV-DsRed was also enhanced with the percentage of DsRed-positive Ad293 cells increased from 55 % to about 80 %. Moreover, the transfection efficiency in 3T3, HeLa, INS-1, and bone marrow stem cell (BMSC) cells increased about 2-3-fold. Finally, confocal microscopy analysis showed that incorporation of VSV-G significantly enhanced the endocytosis of EG into target cells. In the present study, a novel type of non-viral DNA delivery vehicle consisting of EG and fusogenic VSV-G proteins was formulated, which showed superior transfection efficiency even in cells resistant to classical transfection.


Subject(s)
DNA/genetics , Erythrocyte Membrane/genetics , Genetic Enhancement/methods , Glycoproteins/genetics , Lentivirus/genetics , Transfection/methods , 3T3 Cells , Animals , DNA/administration & dosage , HeLa Cells , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...