Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 364: 114387, 2023 06.
Article in English | MEDLINE | ID: mdl-36958593

ABSTRACT

BACKGROUND: There are no specific treatment methods for intracerebral hemorrhage (ICH). Neuroinflammation triggered by microglial pyroptosis plays an important role in ICH pathophysiology. Bone marrow mesenchymal stem cells (BMSCs) are widely used in the treatment of neurological diseases because of their paracrine function. In this study, we aimed to clarify whether BMSCs can alleviate microglial pyroptosis after ICH by secreting C1q/tumor necrosis factor-related protein 3 (CTRP3), a adiponectin paralog with established metabolic regulatory properties and neuroprotective effects. METHODS: In an in vitro study, microglia were stimulated with hemin for pyroptosis and then co-cultured with BMSCs, CTRP3, or CTRP3-small interfering RNA (siRNA)-BMSC; in an in vivo study, intracerebroventricular transplantation of BMSCs or siRNA-CTRP3-BMSCs was performed after ICH surgery. The expression of inflammation-related factors was detected by qRT-PCR and ELISA. Western blotting and immunofluorescence staining were performed to detect the expression of pyroptotic protein, and western blotting was used to detect the activation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and splenic tyrosine kinase (Syk). Behavioral changes were detected 7 days after transplantation. RESULTS: ELISA and qRT-PCR results showed that the production of inflammatory cytokines in hemin-stimulated microglia was significantly downregulated following pretreatment with BMSCs or CTRP3. The Caspase-1 activity assay kit and western blotting results showed that BMSCs attenuated microglial pyroptosis by secreting CTRP3. Furthermore, the modulation functions of BMSCs or CTRP3 involve the promotion of PI3K/AKT and inhibition of Syk signaling pathway activation. Neurological deficits, edema, and disruption of tight junction protein were completely alleviated, while inflammation-related factors and microglial pyroptosis after ICH were significantly downregulated after BMSCs administration. CONCLUSION: BMSCs can inhibit neuroinflammation by inhibiting microglial pyroptosis, thus alleviate ICH symptoms, likely by suppressing the Syk signaling pathway while promoting the PI3K/AKT signaling pathway activation through producing CTRP3.


Subject(s)
Mesenchymal Stem Cells , Microglia , Rats , Animals , Microglia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Complement C1q/metabolism , Pyroptosis , Neuroinflammatory Diseases , Hemin/pharmacology , Hemin/metabolism , Bone Marrow/metabolism , Cerebral Hemorrhage/metabolism , Mesenchymal Stem Cells/metabolism , Inflammation/metabolism , RNA, Small Interfering/metabolism , Tumor Necrosis Factors/metabolism
2.
J Inflamm Res ; 15: 5917-5933, 2022.
Article in English | MEDLINE | ID: mdl-36274828

ABSTRACT

Background: Neuroinflammation plays an important role following intracerebral hemorrhage (ICH). NLRP3 inflammasome-mediated pyroptosis contributes to the mechanism of neuroinflammation. It has been reported that dendritic cell-associated C-type lectin-1 (Dectin-1) activation triggers inflammation in neurological diseases. However, the role of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis after ICH remains unclear. Here, we aimed to explore the effect of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis and neuroinflammation after ICH. Methods: Adult male C57BL/6 mice were used to establish the ICH model. Laminarin, an inhibitor of Dectin-1, was administered for intervention. Expression of Dectin-1 was evaluated by Western blot and immunofluorescence. Brain water content and neurobehavioral function were tested to assess brain edema and neurological performance. Western blot was conducted to evaluate the level of GSDMD-N. ELISA kits were used to measure the levels of IL-1ß and IL-18. qRT-PCR and Western blot were performed to evaluate the expressions of NLRP3 inflammasome, IL-1ß, and IL-18. Results: The expression of Dectin-1 increased following ICH, and Dectin-1 was expressed on microglia. In addition, inhibition of Dectin-1 by laminarin decreased brain edema and neurological impairment after ICH. Moreover, inhibition of Dectin-1 decreased the expression of pyroptosis-related protein, GSDMD-N, and inflammatory cytokines (IL-1ß and IL-18). Mechanistically, Dectin-1 blockade inhibits NLRP3 inflammasome activation, thereby alleviating neuroinflammatory injury by attenuating NLRP3 inflammasome-mediated pyroptosis both in vivo and in vitro. Conclusion: Our study indicates that the inhibition of Dectin-1 alleviates neuroinflammation by attenuating NLRP3 inflammasome-mediated pyroptosis after ICH.

3.
Neurobiol Dis ; 143: 104945, 2020 09.
Article in English | MEDLINE | ID: mdl-32428552

ABSTRACT

Deafferentation pain (DP), a typical neuropathic pain, occurs due to peripheral or central sensory nerve injury, which causes abnormal discharge of the upstream neurons or C fibers. Current treatment methods for DP have multiple side effects. Bone marrow mesenchymal stem cells (BMSC) have been used to treat neuropathic pain because of their ability to regulate neuroinflammation. Glial cell-derived neurotrophic factor (GDNF) is a neurotrophic mediator that exerts neuroprotective effects in neurological diseases. In this study, we investigated whether DP could be alleviated by BMSCs and the underlying mechanism. In vitro study, microglia was stimulated by lipopolysaccharide and then co-cultured with BMSC, GDNF or siRNA GDNF-BMSC. In vivo study, BMSC or siRNA GDNF-BMSC was transplanted intramedullarily on the 21st day after DP surgery. The expression of inflammatory-related factors were detected by RT-PCR and ELISA, RT-PCR,flow cytometry and immunofluorescence staining were performed to detect the expression of microglial surface markers, and Western blot was used to detect the expression levels of p-NF-kb, pPI3K, and pAKT. The pain-related behavioral changes were detected 7 days after transplantation. ELISA and RT-PCR results showed that the production of inflammatory cytokines in lipopolysaccharide-stimulated microglia and DP model plasma was downregulated, while anti-inflammatory mediators were upregulated significantly following pretreatment with BMSCs or GDNF. Flow cytometry, immunofluorescence staining, and RT-PCR results showed that BMSCs inhibited the microglial M1 phenotype and promoted the M2 phenotype by secreting GDNF. Furthermore, modulation functions of BMSCs involve inhibiting NF-κB while promoting PI3K /AKT signaling pathway activation. We found that our in vivo DP model was completely deafferent and BMSC administration clearly alleviated symptoms of DP. This function was also, at least partly, achieved by GDNF. The present studies demonstrate that BMSC can inhibit neuroinflammation by transforming microglial destructive M1 phenotype into regenerative M2 phenotype, and thus alleviate DP,likely by suppressing the NF-κB signaling pathway while promoting the PI3K/AKT signaling pathway activation through producing GDNF. The present findings are in support of the potential therapeutic application of BMSCs and the pharmaceutical application of GDNF for DP.


Subject(s)
Causalgia/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mesenchymal Stem Cells/metabolism , Microglia/metabolism , Signal Transduction/physiology , Animals , Bone Marrow Cells/metabolism , Down-Regulation , Male , Mesenchymal Stem Cell Transplantation , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
4.
Stem Cells Dev ; 29(11): 714-727, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32111146

ABSTRACT

Neuroinflammation is associated with the pathogenesis of all types of neurological disease, in which microglial cells play a critical role. In response to disturbances in the microenvironment, microglia (MG) become activated and differentiate into either an M1 phenotype, which has a proinflammatory damaging effect, or an M2 phenotype, which plays an anti-inflammatory and reparative role. Thus, modulating microglial polarization is a suitable strategy to treat neuroinflammatory disorders. Glial cell-derived neurotrophic factor (GDNF) is a neurotrophic mediator that exerts neuroprotective effects during neurological diseases. In this study, we predicted that adipose-derived stem cells (ADSCs) could produce GDNF and investigated the effects of GDNF on microglial M1/M2 polarization. Furthermore, we determined whether GDNF modulates microglial activation and polarization via the phosphoinositide-3-kinase (PI3K)/AKT signaling pathway. We found that the secretion of inflammatory cytokines in lipopolysaccharide-stimulated MG was downregulated, whereas the anti-inflammatory mediators in interleukin-4-stimulated MG were upregulated obviously, following pretreatment with ADSCs or GDNF. In addition, GDNF produced by ADSCs inhibited the MG M1 phenotype and promoted the M2 phenotype by upregulating the PI3K/ATK pathway. These results reveal that GDNF produced by ADSCs might be useful for the regulation of neuroinflammatory disorders.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mesenchymal Stem Cells/metabolism , Microglia/cytology , Animals , Cell Line , Cells, Cultured , Coculture Techniques/methods , Culture Media, Conditioned/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Interleukin-4/genetics , Interleukin-4/metabolism , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...