Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39014141

ABSTRACT

The electrochemical advanced oxidation process (EAOP) has shown significant promise in the field of refractory organic wastewater treatment due to its high efficiency and environmentally friendly nature. In this study, Ti/Sb-SnO2 electrodes with varying proportions of Hf were prepared using the sol-gel method. The addition of Hf transformed the original collapsing and broken surface into a flat and regular surface. The results demonstrated that Ti/Sb-SnO2-Hf electrode doped with 6% Hf exhibited a higher oxygen evolution potential (OEP) and excellent stability. The OEP increased from 2.315 V without Hf-doping to 2.482 V, and the corresponding actual life was 321.05% higher than that without Hf. The current density (5-40 mA·cm-2), electrolyte concentration (0.02-0.2 mol·L-1), pH (3-11), and initial pollutant concentration (5-80 mg·L-1) were evaluated to confirm the tetracycline (TC) degradation characterization of Ti/Sb-SnO2-6%Hf electrodes. It was concluded that under the optimal degradation conditions, the removal rate of TC could reach 99.66% within 2 h. The degradation of TC follows first-order reaction kinetics. The oxidative degradation of TC was achieved through indirect oxidation, with ·OH playing a dominant role. TC's electrochemical oxidation degradation pathway has been proposed: Based on LC-MS results, three main pathways are speculated. During the electrocatalytic oxidation process, decarboxylation, deamidation, and ring-opening reactions occur under ·OH attack, producing intermediate compounds with m/z values of 427, 433, 350, 246, 461, 424, 330, 352, 309, 263, and 233. These intermediates are further oxidized to intermediate compounds with an m/z value of 218. This work introduces a new efficient anode electrochemical catalyst for the degradation of TC, providing a strategy for industrial applications.

2.
Environ Sci Pollut Res Int ; 31(4): 5158-5172, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110683

ABSTRACT

In recent years, PbO2 electrodes have received widespread attention due to their high oxygen evolution reaction (OER) activity. However, due to the brittle nature of the plating layer, it is easy to cause the active layer to fall off. Pb2+ will leach out with the electrochemical process causing secondary pollution. The starting point of this study is established to improve the stability and adhesion of the electrode coating. Electrochemical oxidation technology has the characteristics of high treatment efficiency, wide range of applications, and non-polluting environment. In this study, conventional PbO2 electrodes were modified by using co-deposition of ZrO2 nanoparticles. In addition, α-PbO2 was added to increase the stability of the electrodes. At a high current density of 1 A/cm2, the accelerated life of the pure PbO2 electrode is 648 h, the accelerated life of the PbO2-ZrO2 electrode is 1.37 times that of the pure PbO2, and the electrode with an added α-PbO2 layer is 1.69 times that of the pure PbO2 electrode. The amount of dissolved Pb2+ was only 29% of that of pure PbO2. The electrochemical performance of the electrode is evaluated by studying the degradation effect of ceftriaxone sodium (CXM). The addition of ZrO2 nanoparticles alters the particle size and deposition content of PbO2, leading to a unique crystal structure distinct from pure PbO2. Compared to conventional PbO2 electrodes, the PbO2-ZrO2 can remove chemical oxygen demand (COD) and pollutants more efficiently, removing for 59% increased by 38.47%. Therefore, PbO2-ZrO2 is of great value in the field of electrochemical degradation of industrial pollutants.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Oxides/chemistry , Ceftriaxone , Lead , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Electrodes , Titanium/chemistry
3.
Environ Sci Pollut Res Int ; 29(50): 76263-76274, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35668258

ABSTRACT

The all-vanadium redox flow battery (VRFB) is becoming a promising technology for large-scale energy storage due to its advantages such as scalability and flexibility. In recent years, the VRFB has been successfully developed and put into use in many countries. It is expected that the abandoned VRFB will generate a large amount of vanadium waste. To our knowledge, there are few reports on the disposal of spent VRFBs. Herein, chitosan-coated nano-zero-valent iron (CS-Fe0) is proposed for the first time as adsorbents for the treatment of spent VRFBs. It can provide a new approach to deal with the upcoming large number of spent VRFBs. The calculated maximum adsorption capacity for V(V) of chitosan and CS-Fe0 reached 209.5 and 511.3 mg/g at 288 K, respectively. CS-Fe0 showed better adsorption performance than chitosan under different pH conditions and is easy to be separated from the liquid phase. The Freundlich isotherm was suitable for the adsorption process of chitosan, and CS-Fe0 was more consistent with the Langmuir isotherm. Ionic strength (0.05-0.5 M) had a positive effect on the adsorption capacity of CS-Fe0, and the influence of coexisting anions on CS-Fe0 could be negligible. FTIR and XPS analyses revealed that the primary mechanisms were the electrostatic attraction of chitosan and redox of Fe0. The present study confirmed that CS-Fe0 could be a potential material to efficiently trap V(V) from the VRFB electrolyte.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Iron , Kinetics , Magnetic Phenomena , Vanadium , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...