Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 10(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074065

ABSTRACT

Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.

2.
Food Sci Nutr ; 8(8): 4232-4241, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884704

ABSTRACT

This study aimed to evaluate the bio-accessibility of the phenolics and flavonoid, the polyphenolic profile and the antioxidant activity of sprouts obtained from four different quinoa genotypes and one djulis cultivar during in vitro gastrointestinal digestion. Compared to their content in sprouts, the bioavailable phenolics after the oral phase, the gastric phase, the intestinal phase, and in the dialyzable fraction were in the ranges of 45.7%-63.5%, 87.6%-116.7%, 89.6%-124.5%, and 7.4%-10.9%, respectively. The trend in flavonoid bio-accessibility was similar to the polyphenols. The dialyzable flavonoid recoveries varied between 4.2% and 12.4%. Correspondingly, the free radical scavenging activity of the dialyzable phase decreased significantly from 84.7% to 96.5%. The main phenolic acids were vanillic acid, caffeic acid, and syringic acid during digestion. The results suggest that gastrointestinal digestion greatly affected the absorption of polyphenols and flavonoid of quinoa and djulis sprouts, as well as their antioxidant capacity.

3.
Plants (Basel) ; 9(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823617

ABSTRACT

Identifying suitable salt stress-tolerant phenotypes based on their agronomic and physiological traits remains a herculean task in forage-type oat (Avena sativa L.) breeding. This study examined the responses of six forage-type oat cultivars under four levels of saline stress over the vegetative growth cycle. Crop growth, water status-related traits and nitrogen status-related traits were analyzed in different plant parts to evaluate effective approaches for identifying salt tolerance. Plant biomass, height, tiller number and culm thickness changed substantially during salinity, but they were not precise enough for use in estimating genotypic salinity tolerance during long-term stress. Genotypes bearing larger numbers of tillers showed greater sensitivity to salinity due to its effects on biomass loss. Tolerant genotypes exhibited higher relative shoot biomass together with higher water use efficiency. The concentrations of Na+, K+ and their ratio, combined with the δ13C in shoots and roots were effective indicators for estimating tolerant genotypes through better water maintenance. N concentrations of shoots were the most efficient for evaluating genotypic tolerance. Low nitrate reductase (NR) and glutamine synthetase (GS) activity might be key factors limiting N accumulation. Chlorophyll (Chl) content and net photosynthetic rate, as well as stomatal conductance and evaporation, were useful for identifying salinity tolerance physiological mechanisms, but the effectiveness was low for genotypic tolerance testing for forage type oats due to the interaction between genotypes and salinity levels. The selection of high salinity-tolerant genotypes should focus on genotypes with photosynthetic resilience to salt, followed by high N metabolism (higher NR and GS activities) to ensure accumulation of more N in the shoot dry matter.

4.
Data Brief ; 31: 105758, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32577441

ABSTRACT

The importance of quinoa has been emphasized considerably in the recent decades, as a highly nutritional crop seed that is tolerant to salinity and amenable to arid agronomical conditions. The focus of this paper is to provide raw and a supplemental data of the research article entitled "Agronomic performance of irrigated quinoa in desert areas: comparing different approaches for early assessment of salinity stress" [1], aiming to compare different approaches for early detection, at the genotypic and crop levels, of the effect of salinity caused by irrigation on the agronomic performance of this crop. A set of 20 genotypes was grown under drip irrigation in sandy soil, amended with manure, at the International Center for Biosaline Agriculture (UAE) for two weeks, after which half of the trial was submitted to irrigation with saline water and this was continued until crop maturity. After eight weeks of applying the two irrigation regimes, pigment contents were evaluated in fully expanded leaves. The same leaves were then harvested, dried and the stable carbon and nitrogen isotope compositions (δ13C and δ15N) and the total nitrogen and carbon contents of the dry matter analyzed, together with ion concentrations. At maturity yield components were assessed and yield harvested. Data analysis demonstrated significant differences in genotypes response under each treatment, within all assessed parameters. The significant level was provided using the Tukey-b test on independent samples. The present dataset highlights the potential use of different approaches to crop phenotyping and monitoring decision making.

5.
Int J Mol Sci ; 20(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618819

ABSTRACT

Alfalfa (Medicago sativa L.) is frequently constrained by environmental conditions such as drought. Within this context, it is crucial to identify the physiological and metabolic traits conferring a better performance under stressful conditions. In the current study, two alfalfa cultivars (San Isidro and Zhong Mu) with different physiological strategies were selected and subjected to water limitation conditions. Together with the physiological analyses, we proceeded to characterize the isotopic, hormone, and metabolic profiles of the different plants. According to physiological and isotopic data, Zhong Mu has a water-saver strategy, reducing water lost by closing its stomata but fixing less carbon by photosynthesis, and therefore limiting its growth under water-stressed conditions. In contrast, San Isidro has enhanced root growth to replace the water lost through transpiration due to its more open stomata, thus maintaining its biomass. Zhong Mu nodules were less able to maintain nodule N2 fixing activity (matching plant nitrogen (N) demand). Our data suggest that this cultivar-specific performance is linked to Asn accumulation and its consequent N-feedback nitrogenase inhibition. Additionally, we observed a hormonal reorchestration in both cultivars under drought. Therefore, our results showed an intra-specific response to drought at physiological and metabolic levels in the two alfalfa cultivars studied.


Subject(s)
Droughts , Energy Metabolism , Medicago sativa/physiology , Plant Growth Regulators/metabolism , Stress, Physiological , Adaptation, Biological , Biomass , Photosynthesis , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism
6.
Front Plant Sci ; 9: 1351, 2018.
Article in English | MEDLINE | ID: mdl-30283474

ABSTRACT

Knowledge of the function of the ear as a key organ in the uptake, remobilization and partitioning of nitrogen is essential for understanding its contribution to grain filling and thus guiding future breeding strategies. In this work, four Chinese winter wheat genotypes were grown on a 15N-enriched nutrient solution. N absorption and further remobilization to the flag leaf, the ear and the mature grains were calculated via the 15N atom % excess. The results indicated that the high yields of the Chinese wheat genotype were determined by higher grain numbers per ear, with greater plant height and a larger ear size, while the thousand-grain weight did not affect grain yield. In the mature grains, 66.7% of total N was remobilized from the pre-anthesis accumulation in the biomass, while the remaining 33.3% was derived from the N taken up during post-anthesis. From anthesis to 2 weeks after the anthesis stage, the flag leaf remobilized 3.67 mg of N outwards and the ear remobilized 3.87 mg of N inwards from the pre-anthesis accumulation in each plant. The positive correlation between ear Nrem and grain Nrem indicated that the ear was an important organ for providing N to the grain, whereas the remobilized N stream from the leaves was not correlated with grain Nrem, thus indicating that flag leaf N was not translocated directly to the grain. The grain Nrem was negatively correlated with the ear N concentration throughout grain filling, which suggested that higher-yielding genotypes had better sink activity in the ear, while Rubisco played a critical role in N deposition. Therefore, to improve yield potential in wheat, the N accumulation in the ear and the subsequent remobilization of that stored N to the grains should be considered. N accumulation and remobilization in the ear may at least be valuable for Chinese breeding programs that aim at optimizing the sink/source balance to improve grain filling.

7.
J Integr Plant Biol ; 58(11): 914-926, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26990448

ABSTRACT

The role of wheat ears as a source of nitrogen (N) and carbon (C) in the grain filling process has barely been studied. To resolve this question, five wheat genotypes were labeled with 15 N-enriched nutrient solution. N remobilization and absorption were estimated via the nitrogen isotope composition of total organic matter and Rubisco. Gas exchange analyses showed that ear photosynthesis contributed substantially to grain filling in spite of the great loss of C due to respiration. Of the total kernel N, 64.7% was derived from the N acquired between sowing and anthesis, while the remaining 35.3% was derived from the N acquired between anthesis and maturity. In addition, 1.87 times more N was remobilized to the developing kernel from the ear than from the flag leaf. The higher yielding genotypes showed an increased N remobilization to the kernel compared to the lower yielding genotypes. In addition, the higher yielding genotypes remobilized more N from the ears to the kernel than the lower yielding genotypes, while the lower yielding genotypes remobilized more N from the flag leaf to the kernel. Therefore, the ears contribute significantly toward fulfilling C and N demands during grain filling.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Triticum/growth & development , Triticum/metabolism , Edible Grain/growth & development , Edible Grain/metabolism , Photosynthesis/genetics , Photosynthesis/physiology , Ribulose-Bisphosphate Carboxylase/metabolism
8.
Bioresour Technol ; 187: 354-361, 2015.
Article in English | MEDLINE | ID: mdl-25863899

ABSTRACT

Given that the glycerol organosolv pretreatment (GOP) can effectively improve the hydrolyzability of various lignocellulosic substrates, physicochemical changes of the substrate before and after the pretreatment was characterized to elucidate what is responsible for it. The effect of GOP on the main components and hydrolyzability of wheat straw was revisited. Results demonstrate that the GOP should be a promising candidate for the current pretreatment. Then the composition and structure of substrates was measured at multi-dimensional scales by using various analytic equipment such as TGA, SEM, AFM, CLSM, FT-IR, XRD and solid-state CP/MAS (13)C NMR. This paper reports some new insights on the mechanism behind that, which can be beneficial for further development, optimization, and scale-up of the GOP process.


Subject(s)
Cellulase/chemistry , Glycerol/chemistry , Lignin/chemistry , Organic Chemicals/chemistry , Solvents/chemistry , Triticum/chemistry , Hydrolysis , Plant Components, Aerial/chemistry
9.
J Integr Plant Biol ; 56(5): 444-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24028829

ABSTRACT

The ear, together with the flag leaf, is believed to play a major role as a source of assimilates during grain filling in C3 cereals. However, the intrusive nature of most of the available methodologies prevents reaching conclusive results in this regard. This study compares the carbon isotope composition (δ(13)C) in its natural abundance in the water-soluble fractions of the flag leaf blade and the ear with the δ(13)C of mature kernels to assess the relative contribution of both organs to grain filling in durum wheat (Triticum turgidum L. var. durum). The relative contribution of the ear was higher in landraces compared to modern cultivars, as well as in response to nitrogen fertilization and water stress. Such genotypic and environmentally driven differences were associated with changes in harvest index (HI), with the relative contribution of the ear being negatively associated with HI. In the case of the genotypic differences, the lower relative contribution of the ear in modern cultivars compared with landraces is probably associated with the appearance in the former of a certain amount of source limitation driven by a higher HI. In fact, the relative contribution of the ear was far more responsive to changes in HI in modern cultivars compared with landraces.


Subject(s)
Carbon Isotopes/metabolism , Plant Leaves/metabolism , Triticum/metabolism , Genotype , Photosynthesis/genetics , Photosynthesis/physiology , Plant Leaves/genetics , Triticum/genetics
10.
J Integr Plant Biol ; 56(5): 492-504, 2014 May.
Article in English | MEDLINE | ID: mdl-24373600

ABSTRACT

This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index (HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release. Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China, have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher δ(13)C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance does not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike, but only to a higher, whole-spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.


Subject(s)
Triticum/metabolism , Triticum/physiology , Biomass , Carbon Isotopes/metabolism , China
SELECTION OF CITATIONS
SEARCH DETAIL
...