Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38676221

ABSTRACT

Metal oxide semi-conductors are widely applied in various fields due to their low cost, easy processing, and good compatibility with microelectronic technology. In this study, ternary α-Fe2O3/TiO2/Ti3C2Tx nanocomposites were prepared via simple hydrothermal and annealing treatments. The composition, morphology, and crystal structure of the samples were studied using XPS, SEM, EDS, XRD, and multiple other testing methods. The gas-sensing measurement results suggest that the response value (34.66) of the F/M-3 sensor is 3.5 times higher than the pure α-Fe2O3 sensor (9.78) around 100 ppm acetone at 220°C, with a rapid response and recovery time (10/7 s). Furthermore, the sensors have an ultra-low detection limit (0.1 ppm acetone), excellent selectivity, and long-term stability. The improved sensitivity of the composites is mainly attributed to their excellent metal conductivity, the unique two-dimensional layered structure of Ti3C2Tx, and the heterojunction formed between the nanocomposite materials. This research paves a new route for the preparation of MXene derivatives and metal oxide nanocomposites.

2.
RSC Adv ; 12(51): 33056-33063, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36425184

ABSTRACT

Ammonia (NH3) is a common air pollutant and is a biomarker for kidney disease. Therefore, the preparation of ammonia gas sensors with high sensitivity, good selectivity and low operating temperature is of great importance for health protection. Using the in situ electrostatic self-assembly approach, a chemoresistive gas sensor based on Co(OH)2/Ti3C2T x hybrid material was created in this study. The prepared samples were characterized by XRD, XPS, TEM, BET and other testing methods for structure, surface topography and elements. These samples were fabricated into sensors, and the gas sensing properties of the materials were investigated under different test conditions. The results show that the gas response value of the C/M-2 sensor is up to about 14.7%/100 ppm, which is three times the response value of the sensor made of pure MXene to NH3. In addition, the Co(OH)2/Ti3C2T x hybrid sensors exhibit excellent repeatability, high sensitivity under low concentration (less than 5 ppm), fast response/recovery time (29 s/49 s) and long-time stability, which indicates their promising utility in the IoT field.

SELECTION OF CITATIONS
SEARCH DETAIL
...