Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(22): 15356-15364, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36314604

ABSTRACT

Ground-level ozone (O3) has been an emerging air pollution in China and interacts with fine particulate matters (PM2.5). We synthesized observations of O3 and its precursors in two summer months of 2020 at 10 sites in the Zhejiang province, East China and simulated the in situ photochemistry. O3 pollution in the northeastern Zhejiang province was more serious than that in the southwest. The site-average daytime O3 increment correlated well (R2 = 0.73) with the total reactivity of volatile organic compounds (VOCs) and carbon monoxide toward the hydroxyl radical (OH) in urban areas. Model simulation revealed that the main function of nitrogen oxides (NOx) at the rural sites where isoprene accounted for >85% of OH reactivity of VOCs was to facilitate the radical cycling. With NOx reduction from 0 to 90%, the self-reactions between peroxy radicals (Self-Rxns), a proven pathway for secondary organic aerosol formation, were intensified by up to 23-fold in a NOx-rich environment. In contrast, reducing VOCs could weaken the Self-Rxns while reducing O3 production rate and atmospheric oxidation capacity. This study observes and simulates O3 chemistry based on extensive measurements in typical Chinese cities, highlighting the necessity of reducing VOCs for co-benefit of O3 and PM2.5.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Environmental Monitoring , Ozone/analysis , Particulate Matter , China
2.
Environ Sci Technol ; 56(20): 14326-14337, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36178303

ABSTRACT

As important regions of transition between land and sea, the three bay areas of Bohai Bay (BHB), Hangzhou Bay (HZB), and Pearl River Estuary (PRE) in China often suffer from severe photochemical pollution despite scarce anthropogenic emissions. To understand the causes of high ozone (O3) concentrations, the high O3 episode days associated with special synoptic systems in the three bays were identified via observations and simulated by the weather research and forecasting coupled with community multiscale air quality (WRF-CMAQ) model. It was revealed that the interaction between synoptic winds and mesoscale breezes resulted in slow wind speeds over the HZB and PRE, where air pollutants transported from upwind cities gained a long residence time and subsequently participated in intensive photochemical reactions. The net O3 production rates within the bay areas were even comparable to those in surrounding cities. This finding was also applicable to BHB but with lower net O3 production rates, while high levels of background O3 and the regional transport from farther upwind BHB partially elevated the O3 concentrations. Hence, these three bay areas served as O3 "pools" which caused the accumulation of air pollutants via atmospheric dynamics and subsequent intense photochemical reactions under certain meteorological conditions. The results may be applicable to other similar ecotones around the world.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring/methods , Ozone/analysis
3.
Sci Total Environ ; 831: 154788, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35341858

ABSTRACT

Ozone (O3) pollution has been a persistent problem in Hong Kong, particularly in autumn when severe O3 pollution events are often observed. In this study, linear regression analyses of long-term O3 data in suburban Hong Kong revealed that the variation of autumn O3 obviously leveled off during 2005-2017, mainly due to the significant decrease of autumn O3 in 2013-2017 (period II), despite the increase in 2005-2012 (period I). In addition, the rise of O3 in summer and winter also ceased since 2013. In contrary, O3 continuously increased throughout the spring of 2005-2017, especially in period II. Consequently, an incessant increase of overall O3 was observed during 2005-2017. A statistical model combining Kolmogorov-Zurbenko filter with multiple linear regressions, and a photochemical box model incorporating CB05 mechanism were applied to probe the causes of the above trends. In general, O3 production was controlled by VOC-limited regime throughout 13 years. The meteorological variability and regional transport facilitated the O3 growth in period Ι. In contrast, the unchanged O3 level in period II was attributable to the negative impact of meteorological variability and reduction of regional transport effect on O3 formation and accumulation, as well as the negligible change in locally-produced O3. In autumn of period II, the inhibitory meteorological variability, reduced regional transport, and alleviated local production were the driving force for the hard-earned decrease of O3. However, the remarkable rise of spring O3 was caused by the reduction of NOx, especially in the spring of period II. The findings of the long-term and seasonal variations of O3 pollution in Hong Kong are helpful for future O3 mitigation.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , China , Environmental Monitoring , Hong Kong , Ozone/analysis , Seasons
4.
Environ Pollut ; 270: 116285, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33352486

ABSTRACT

Investigating the long-term trends of alkyl nitrates (RONO2) is of great importance for evaluating the variations of photochemical pollution. Mixing ratios of C1-C5 RONO2 were measured in autumn Hong Kong from 2002 to 2016, and the average level of 2-butyl nitrate (2-BuONO2) always ranked first. The C1-C4 RONO2 all showed increasing trends (p < 0.05), and 2-BuONO2 had the largest increase rate. The enhancement in C3 RONO2 was partially related to elevated propane, and dramatic decreases (p < 0.05) in both nitrogen monoxide (NO) and nitrogen dioxide (NO2) also led to the increased RONO2 formation. In addition, an increase of hydroxyl (OH) and hydroperoxyl (HO2) radicals (p < 0.05) suggested enhanced atmospheric oxidative capacity, further resulting in the increases of RONO2. Source apportionment of C1-C4 RONO2 specified three typical sources of RONO2, including biomass burning emission, oceanic emission, and secondary formation, of which secondary formation was the largest contributor to ambient RONO2 levels. Mixing ratios of total RONO2 from each source were quantified and their temporal variations were investigated. Elevated RONO2 from secondary formation and biomass burning emission were two likely causes of increased ambient RONO2. By looking into the spatial distributions of C1-C5 RONO2, regional transport from the Pearl River Delta (PRD) was inferred to build up RONO2 levels in Hong Kong, especially in the northwestern part. In addition, more serious RONO2 pollution was found in western PRD region. This study helps build a comprehensive understanding of RONO2 pollution in Hong Kong and even the entire PRD.


Subject(s)
Air Pollutants , Nitrates , Air Pollutants/analysis , Environmental Monitoring , Hong Kong , Nitrates/analysis , Oceans and Seas
5.
Chemosphere ; 246: 125731, 2020 May.
Article in English | MEDLINE | ID: mdl-31918083

ABSTRACT

Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Volatile Organic Compounds/analysis , Aldehydes , Atmosphere , Benzene , China , Formaldehyde , Humans , Inhalation Exposure/statistics & numerical data , Ozone , Toluene
SELECTION OF CITATIONS
SEARCH DETAIL
...