Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Res ; 17(1): 62-72, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17211448

ABSTRACT

We previously showed that Wnt3a could stimulate human embryonic stem (hES) cell proliferation and affect cell fate determination. In the absence of feeder cell-derived factors, hES cells cultured under a feeder-free condition survived and proliferated poorly. Adding recombinant Wnt3a in the absence of feeder cell derived-factors stimulated hES cell proliferation but also differentiation. In the present study, we further extended our analysis to other Wnt ligands such as Wnt1 and Wnt5a. While Wnt1 displayed a similar effect on hES cells as Wnt3a, Wnt5a had little effect in this system. Wnt3a and Wnt1 enhanced proliferation of undifferentiated hES cells when feeder-derived self-renewal factors and bFGF are also present. To explore the possibility to promote the proliferation of undifferentiated hES cells by activating the Wnt signaling, we overexpressed Wnt3a or Wnt1 gene in immortalized human adult fibroblast (HAFi) cells that are superior in supporting long-term growth of undifferentiated hES cells than primary mouse embryonic fibroblasts. HAFi cells with or without a Wnt transgene can be propagated indefinitely. Over-expression of the Wnt3a gene significantly enhanced the ability of HAFi feeder cells to support the undifferentiated growth of 3 different hES cell lines we tested. Co-expression of three commonly-used drug selection genes in Wnt3a-overpressing HAFi cells further enabled us to select rare hES clones after stable transfection or transduction. These immortalized engineered feeder cells (W3R) that co-express growth-promoting genes such as Wnt3a and three drug selection genes should empower us to efficiently make genetic modified hES cell lines for basic and translational research.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Signal Transduction/physiology , Wnt Proteins/physiology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Division/physiology , Cell Line, Transformed , Cell Proliferation , Humans , Proto-Oncogene Proteins/genetics , Wnt Proteins/genetics , Wnt-5a Protein , Wnt1 Protein/genetics , Wnt3 Protein , Wnt3A Protein
2.
Stem Cells ; 25(3): 779-89, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17158240

ABSTRACT

We report here a lentiviral vector system for regulated transgene expression. We used the tetracycline repressor fused with a transcriptional suppression domain (tTS) to specifically suppress transgene expression. Human cells were first transduced with a tTS-expressing vector and subsequently transduced with a second lentiviral vector-containing transgene controlled by a regular promoter adjacent to a high-affinity tTS-binding site (tetO). After optimizing the location of the tetO site in the latter vector, we achieved a better inducible transgene expression than the previous lentiviral vectors using the tetracycline repressor systems. In this new system, the transgene transcription from a cellular promoter such as EF1alpha or ubiquitin-C promoter is suppressed by the tTS bound to the nearby tetO site. In the presence of the tetracycline analog doxycycline (Dox), however, the tTS binding is released from the transgene vector and transcription from the promoter is restored. Thus, this system simply adds an extra level of regulation, suitable for any types of promoters (ubiquitous or cell-specific). We tested this tTS-suppressive, Dox-inducible system in 293T cells, human multipotent hematopoietic progenitor cells, and three human embryonic stem cell lines, using a dual-gene vector containing the green fluorescent protein reporter or a cellular gene. We observed a tight suppression in the uninduced state. However, the suppression is reversible, and transgene expression was restored at 5 ng/ml Dox. The lentiviral vectors containing the tTS-suppressive, Dox-inducible system offer a universal, inducible, and reversible transgene expression system in essentially any mammalian cell types, including human embryonic stem cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Transfer Techniques , Cell Line, Tumor , Flow Cytometry , Genetic Vectors , Green Fluorescent Proteins/genetics , Humans , Lentivirus/genetics , Promoter Regions, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...