Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Exploration (Beijing) ; 4(2): 20230046, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855620

ABSTRACT

The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.

2.
Talanta ; 273: 125859, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447341

ABSTRACT

In this study, the plasmonic Ag nanoparticles (Ag NPs) were uniformly anchored on the high conductivity Nb2CTx (MXene) nanosheets to construct an Ag/Nb2CTx substrate for surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics. The KI addition (0.15 mol/L), the volume ratio between substrate colloid and nanoplastic suspension (2:1), and the mass ratio of Nb2CTx in substrate (14%) on SERS performance were optimized. The EM hot spots of Ag/Nb2CTx are significantly enlarged and enhanced, elucidated by FDFD simulation. Then, the linear relationship between the PS nanoplastics concentration with three different sizes (50, 300, and 500 nm) and the SERS intensity was obtained (R2 > 0.976), wherein, the detection limit was as low as 10-4 mg/mL for PS nanoplastic. Owing to the fingerprint feature, the Ag/Nb2CTx-14% substrate successfully discerns the mixtures from two-component nanoplastics. Meanwhile, it exhibits excellent stability of PS nanoplastics on different detection sites. The recovery rates of PS nanoplastics with different sizes in lake water ranged from 94.74% to 107.29%, with the relative standard deviation (RSD) ranging from 2.88% to 8.30%. Based on this method, the expanded polystyrene (EPS) decomposition behavior was evaluated, and the PS concentrations in four water environments were analyzed. This work will pave the way for the accurate quantitative detection of low concentration of nanoplastics in aquatic environments.

3.
Adv Sci (Weinh) ; 11(13): e2302782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287891

ABSTRACT

The recent development of wearable devices is revolutionizing the way of human-machine interaction (HMI). Nowadays, an interactive interface that carries more embedded information is desired to fulfill the increasing demand in era of Internet of Things. However, present approach normally relies on sensor arrays for memory expansion, which inevitably brings the concern of wiring complexity, signal differentiation, power consumption, and miniaturization. Herein, a one-channel based self-powered HMI interface, which uses the eigenfrequency of magnetized micropillar (MMP) as identification mechanism, is reported. When manually vibrated, the inherent recovery of the MMP causes a damped oscillation that generates current signals because of Faraday's Law of induction. The time-to-frequency conversion explores the MMP-related eigenfrequency, which provides a specific solution to allocate diverse commands in an interference-free behavior even with one electric channel. A cylindrical cantilever model is built to regulate the MMP eigenfrequencies via precisely designing the dimensional parameters and material properties. It is shown that using one device and two electrodes, high-capacity HMI interface can be realized when the magnetic micropillars (MMPs) with different eigenfrequencies have been integrated. This study provides the reference value to design the future HMI system especially for situations that require a more intuitive and intelligent communication experience with high-memory demand.

4.
ACS Nano ; 18(1): 1157-1171, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38147575

ABSTRACT

Exploring flexible tactile sensors capable of recognizing surface information is significant for the development of virtual reality, artificial intelligence, soft robotics, and human-machine interactions (HMI). However, it is still a challenge for current tactile sensors to efficiently recognize the surface pattern information while maintaining the simplicity of the overall system. In this study, cantilever beam-like magnetized micropillars (MMPs) with height gradients are assembled as a position-registered array for rapid recognition of surface pattern information. After crossing the surface location with convex patterns, the deformed MMPs undergo an intrinsic oscillating process to induce damped electrical signals, which can then be converted to a frequency domain for eigenfrequency extraction. Via precisely defining the specific eigenfrequencies of different MMPs, position mapping is realized in crosstalk-free behavior even though all signals are processed by one communication channel and a pair of electrodes. With a customized LabVIEW program, the surface information (e.g., letters, numbers, and Braille) can be accurately reconstructed by the frequency sequence produced in a single scanning procedure. We expect that the proposed interface can be a convenient and powerful platform for intelligent surface information perception and an HMI system in the future.

5.
Mater Today Bio ; 23: 100831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37881448

ABSTRACT

Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.

6.
Mater Today Bio ; 23: 100787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37766895

ABSTRACT

Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.

7.
ACS Appl Mater Interfaces ; 15(33): 39989-40000, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37613999

ABSTRACT

Superhydrophobic fabrics have recently attracted extensive interest not only in the fields of water-repellent clothing but also for the emerging functional fabrics due to their intrinsic flexibility and excellent stability. In this work, we proposed a simple, cost-effective, and environmentally friendly method to fabricate superhydrophobic fabrics with a broad application scope for textiles of different apertures. The flexible, breathable, and superhydrophobic fabric was realized via a three-step process, including polydimethylsiloxane (PDMS) encapsulation, in situ microcilia array formation, and silica nanoparticle decoration. With an adhesive PDMS layer and additive NdFeB particles, the hierarchical structures can tightly attach to the fabric substrate to provide robustness and durability. Specifically, the optimization of microcilia architecture was achieved via tuning the composite mass ratios so that suitable morphologies can be produced for robust nonwetting behavior. The superhydrophobic fabrics possess a contact angle and sliding angle of ∼155 and ∼3°, respectively, with excellent durability against 650 cycles' periodic mechanical abrasion, 130 cycles' tape-peeling test, washing evaluation, and chemical corrosions. Furthermore, the superhydrophobic fabric shows outstanding breathability and flexibility to be adaptive to surfaces with curvature or irregular shapes. The presented superhydrophobic strategy was considered to be feasible for multiple fabric substrates, revealing the broad application potential for fields of healthcare production, outdoor goods, catering industry, etc.

8.
Ultrason Sonochem ; 96: 106441, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37216791

ABSTRACT

Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.


Subject(s)
Sound , Vibration , Acoustics , Micromanipulation/methods , Technology
9.
Biosens Bioelectron ; 228: 115191, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36924690

ABSTRACT

Researchers have struggled to develop highly reliable and sensitive surface-enhanced Raman scattering (SERS) substrates for detecting compounds in complicated systems. In this work, a strategy by constructing Au cores with incompletely wrapped Prussian blue (PB) for highly reliable and sensitive SERS substrate is proposed. The wrapped PB layers can provide the internal standard (IS) to calibrate the SERS signal floatation, whereas the exposed surface of Au cores offers the enhancement effect. The balance between the signal self-calibration and enhancement (hence the trade-off between SERS reliability and sensitivity) is obtained by the approximate semi-wrapping configuration of PB layers on Au cores (i.e., SW-Au@PB). The proposed SW-Au@PB nanoparticles (NPs) exhibit the similar enhancement factor as the pristine Au NPs and contribute to the ultralow RSD (8.55%) of calibrated SERS signals using R6G as probe molecules. The simultaneously realized reliability and sensitivity of SW-Au@PB NPs also enables the detection of hazardous pesticide residues such as paraquat and thiram in herbal plants, with the average detection accuracy up to 92%. Overall, this work mainly provides a controllable synthetic strategy for incompletely wrapped NPs, and most importantly, explores the potential with a proof-of-concept practical application in accurate and sensitive Raman detection of hazardous substances with varying solubility.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Gold/chemistry , Spectrum Analysis, Raman , Reproducibility of Results , Silver/chemistry
10.
Biomimetics (Basel) ; 8(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36648808

ABSTRACT

Rather than using longitudinal "muscle" as in biological inchworm, the existing magnetic active elastomer (MAE)-based inchworm robots utilize magnetic torque to pull and push the soft body, which hinders its locomotion mobility. In this paper, a new pre-strained MAE inchworm millirobot with micropillars is proposed. The pre-strained elastomer serves as a pre-load muscle to contract the soft body, and the micropillars act as tiny feet to anchor the body during the locomotion. The proposed magnetic inchworm robot features a simple fabrication process that does not require special magnetization equipment. For the first time, the pre-load muscle is introduced in the design of magnetic inchworm robots, making it more like a real inchworm in terms of locomotion mechanism. The locomotion principle and parametric design for the desired locomotion performance have been investigated. Experimental results show that the fabricated magnetic inchworm robot (size: 10 mm × 5 mm, micropillars length: 200 µm, and mass: 262 g) can locomote on a smooth acrylic surface (roughness of 0.3 µm) at the speed of 0.125 body lengths per second, which is comparable with the existing magnetic inchworm robots. Moreover, the locomotion capabilities of the inchworm robot on wet surfaces and inclined planes have been verified via experimental studies.

11.
ACS Nano ; 16(8): 12620-12634, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35856940

ABSTRACT

Wearable sensors have recently attracted extensive interest not only in the field of healthcare monitoring but also for convenient and intelligent human-machine interactions. However, challenges such as wearable comfort, multiple applicable conditions, and differentiation of mechanical stimuli are yet to be fully addressed. Herein, we developed a breathable and waterproof electronic skin (E-skin) that can perceive pressure/strain with nonoverlapping signals. The synergistic effect from magnetic attraction and nanoscaled aggregation renders the E-skin with microscaled pores for breathability and three-dimensional microcilia for superhydrophobicity. Upon applied pressure, the bending of conductive microcilia enables sufficient contacts for resistance decrease, while the stretching causes increased resistance due to the separation of conductive materials. The optimized E-skin exhibits a high gauge factor of 7.747 for small strain (0-80%) and a detection limit down to 0.04%. The three-dimensional microcilia also exhibit a sensitivity of -0.0198 kPa-1 (0-3 kPa) and a broad detection range up to 200 kPa with robustness. The E-skin can reliably and precisely distinguish kinds of the human joint motions, covering a broad spectrum including bending, stretching, and pressure. With the nonoverlapping readouts, ternary inputs "1", "0", and "-1" could be produced with different stimuli, which expands the command capacity for logic outputs such as effective Morse code and intuitive robotic control. Owing to the rapid response, long-term stability (10 000 cycles), breathability, and superhydrophobicity, we believe that the E-skin can be widely applied as wearable devices from body motion monitoring to human-machine interactions toward a more convenient and intelligent future.


Subject(s)
Wearable Electronic Devices , Humans , Electric Conductivity , Motion
12.
Nanoscale ; 14(11): 4234-4243, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35234767

ABSTRACT

Cracks play an important role in strain sensors. However, a systematic analysis of how cracks influence the strain sensors has not been proposed. In this work, an intelligent and highly sensitive strain sensor based on indium tin oxide (ITO)/polyurethane (PU) micromesh is realized. The micromesh has good skin compatibility, water vapor permeability, and stability. Due to the color of the ITO/PU micromesh, it can be invisible on the skin. Based on the fragility of ITO, the density and resistance of cracks in the micromesh are greatly improved. Therefore, the ITO/PU micromesh strain sensor (IMSS) has an ultrahigh gauge factor (744.3). In addition, a finite element model based on four resistance layers is proposed to explain the performance of the IMSS and show the importance of high-density cracks. Compared with other strain sensors based on low-density cracks, the IMSS based on high-density cracks has larger sensitivity and better linearity. Physiological signals, such as respiration, pulse, and joint motion, can be monitored using the IMSS self-fixed on the skin. Finally, an invisible and artificial throat has been realized by combining the IMSS with a convolutional neural network algorithm. The artificial throat can translate the throat vibrations of the tester automatically with an accuracy of 86.5%. This work has great potential in health care and language function reconstruction.

13.
Sci China Mater ; 65(6): 1601-1614, 2022.
Article in English | MEDLINE | ID: mdl-35281622

ABSTRACT

Surface enhanced Raman scattering (SERS) is a rapid and nondestructive technique that is capable of detecting and identifying chemical or biological compounds. Sensitive SERS quantification is vital for practical applications, particularly for portable detection of biomolecules such as amino acids and nucleotides. However, few approaches can achieve sensitive and quantitative Raman detection of these most fundamental components in biology. Herein, a noble-metal-free single-atom site on a chip strategy was applied to modify single tungsten atom oxide on a lead halide perovskite, which provides sensitive SERS quantification for various analytes, including rhodamine, tyrosine and cytosine. The single-atom site on a chip can enable quantitative linear SERS responses of rhodamine (10-6-1 mmol L-1), tyrosine (0.06-1 mmol L-1) and cytosine (0.2-45 mmol L-1), respectively, which all achieve record-high enhancement factors among plasmonic-free semiconductors. The experimental test and theoretical simulation both reveal that the enhanced mechanism can be ascribed to the controllable single-atom site, which can not only trap photoinduced electrons from the perovskite substrate but also enhance the highly efficient and quantitative charge transfer to analytes. Furthermore, the label-free strategy of single-atom sites on a chip can be applied in a portable Raman platform to obtain a sensitivity similar to that on a benchtop instrument, which can be readily extended to various biomolecules for low-cost, widely demanded and more precise point-of-care testing or in-vitro detection. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s40843-022-1968-5 and is accessible for authorized users.

14.
Langmuir ; 38(9): 2942-2953, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35200028

ABSTRACT

Rapid droplet detachment from the surface in a "pancake rebound" has recently attracted abundant interest owing to the contact time control for applications in anti-icing and self-cleaning. Even though the pancake rebound on rigid substrates has been realized, the establishment of artificial structures on a flexible counterpart with droplet impact behavior studies has rarely been reported. Here, we introduced a facile approach to fabricating a flexible superhydrophobic film decorated with tunable hierarchical micro/nanostructures for water repellency. With the appropriately optimized architecture, the pancake rebound with reduced contact time can be realized when reaching a specific Weber number on the microcones. We also observed that the pancake rebound on microcilia could be realized by regulating the energy-transfer process on the flexible film during the droplet impact. A tightly stretched and suspended film can serve as the "spring" to store the elastic energy transferred from the kinetic energy of the penetrated droplet while converting back to kinetic energy during the emptying process with a reduced contact time of 5.2 ms. With the preserved water repellency on diverse curvatures, the study raises a new avenue to realize superhydrophobic surfaces and rapid droplet detachment with the potential for a broader spectrum toward practical scenarios in our daily life.

15.
Small ; 17(43): e2103312, 2021 10.
Article in English | MEDLINE | ID: mdl-34585504

ABSTRACT

The sensitivity and linearity are critical parameters that can preserve the high pressure-resolution across a wide range and simplify the signal processing process of flexible tactile sensors. Although extensive micro-structured dielectrics have been explored to improve the sensitivity of capacitive sensors, the attenuation of sensitivity with increasing pressure is yet to be fully resolved. Herein, a novel dielectric layer based on the gradient micro-dome architecture (GDA) is presented to simultaneously realize the high sensitivity and ultrabroad linearity range of capacitive sensors. The gradient micro-dome pixels with rationally collocated amount and height can effectively regulate the contact area and hence enable the linear variation in effective dielectric constant of the GDA dielectric layer under varying pressures. With systematical optimization, the sensor exhibits the high sensitivity of 0.065 kPa-1 in an ultrabroad linearity range up to 1700 kPa, which is first reported. Based on the excellent sensitivity and linearity, the high pressure-resolution can be preserved across the full scale of pressure spectrum. Therefore, potential applications such as all-round physiological signal detection in diverse scenarios, control instruction transmission with combinatorial force inputs, and convenient Morse code communication with non-overlapping capacitance signals are successfully demonstrated through a single sensor device.


Subject(s)
Wearable Electronic Devices , Electric Capacitance , Mechanical Phenomena , Pressure , Touch
16.
Nanomicro Lett ; 13(1): 197, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34523060

ABSTRACT

The wearable sensors have recently attracted considerable attentions as communication interfaces through the information perception, decoding, and conveying process. However, it is still challenging to obtain a sensor that can convert detectable signals into multiple outputs for convenient, efficient, cryptic, and high-capacity information transmission. Herein, we present a capacitive sensor of magnetic field based on a tilted flexible micromagnet array (t-FMA) as the proposed interaction interface. With the bidirectional bending capability of t-FMA actuated by magnetic torque, the sensor can recognize both the magnitude and orientation of magnetic field in real time with non-overlapping capacitance signals. The optimized sensor exhibits the high sensitivity of over 1.3 T-1 and detection limit down to 1 mT with excellent durability. As a proof of concept, the sensor has been successfully demonstrated for convenient, efficient, and programmable interaction systems, e.g., touchless Morse code and Braille communication. The distinguishable recognition of the magnetic field orientation and magnitude further enables the sensor unit as a high-capacity transmitter for cryptic information interaction (e.g., encoded ID recognition) and multi-control instruction outputting. We believe that the proposed magnetic field sensor can open up a potential avenue for future applications including information communication, virtual reality device, and interactive robotics.

17.
Adv Mater ; 33(27): e2100859, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34062019

ABSTRACT

The trade-off between sensitivity and linearity is critical for preserving the high pressure-resolution over a broad range and simplifying the signal processing/conversion of flexible tactile sensors. Conventional dielectrics suffer from the difficulty of quantitatively controlling the interacted mechanical and dielectric properties, thus causing the restricted sensitivity and linearity of capacitive sensors. Herein, inspired by human skin, a novel hybrid dielectric composed of a low-permittivity (low-k) micro-cilia array, a high-permittivity (high-k) rough surface, and micro-dome array is developed. The pressure-induced series-parallel conversion between the low-k and high-k components of the hybrid dielectric enables the linear effective dielectric constant and controllable initial/resultant capacitance. The gradient compressibility of the hybrid dielectric enables the linear behavior of elastic modulus with pressures, which derives the capacitance variation determined by the effective dielectric constant. Therefore, an ultrawide linearity range up to 1000 kPa and a high sensitivity of 0.314 kPa-1 are simultaneously achieved by the optimized hybrid dielectric. The design is also applicable for triboelectric tactile sensors, which realizes the similar linear behavior of output voltage and enhanced sensitivity. With the high pressure-resolution across a broad range, potential applications such as healthcare monitoring in diverse scenarios and control command conversion via a single sensor are demonstrated.


Subject(s)
Touch , Wearable Electronic Devices , Electric Capacitance , Humans , Pressure , Skin
18.
Lab Chip ; 21(9): 1634-1660, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33705507

ABSTRACT

COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.


Subject(s)
COVID-19 , Humans , Nucleic Acid Amplification Techniques , Point-of-Care Testing , SARS-CoV-2 , Sensitivity and Specificity
19.
ACS Appl Mater Interfaces ; 13(1): 1754-1765, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33393309

ABSTRACT

Droplet manipulations are critical for applications ranging from biochemical analysis, medical diagnosis to environmental controls. Even though magnetic actuation has exhibited great potential, the capability of high-speed, precise manipulation, and mixing improvement covering a broad droplet volume has not yet been realized. Herein, we demonstrated that the magnetic actuation could be conveniently achieved via decorating the magnetically responsive film with microcilia. Under magnetic field, the film can quickly response with localized deformation, along with the microcilia to realize the surface superhydrophobicity for droplet manipulation with velocity up to ∼173 mm/s covering a broad volume of 2-100 µL. The robust system further allows us to realize rapid and complete droplet mixing within ∼1.6 s. In addition, the microcilia decorated surface can preserve the robust superhydrophobicity after various stability tests, for example, normal pressing, chemical corrosion, and mechanical abrasion, exhibiting the possibility toward the long-term and real applications. With the multifunctional demonstrations such as obvious mixing improvement, parallel manipulation, and serial dilution, we believe that the methodology can open up a magnetic field-based avenue for future applications in digital microfluidics, and biochemical assays, etc.

20.
Biosens Bioelectron ; 178: 113021, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33513535

ABSTRACT

Immunosensors are molecular recognition-based solid-state biosensing devices, in which the immunochemical reactions are coupled with transducers. As biologic or biochemical substances produced by tumor cells, tumor marker plays an important role in clinical diagnosis and treatment of cancer because its concentration is related to tumor size, clinical stage, and predicting prognosis. Voltammetric immunosensors based on the electrochemical analysis technique provide a sensitive electroanalytical approach for quantitatively detecting tumor markers by measuring the current as a function of the potential. To satisfy the need for accurate monitoring of tumor markers in low-concentration and their slight changes in concentration, the primary aim of developing a novel voltammetric immunosensor is to improve its sensitivity and limit of detection. Compared with traditional immunoassay, the advanced sensitivity-amplified immunosensors have applied appropriate amplification strategies to convert the bio-signal of antigen-antibody recognition events to the high electrochemical signal of redox species. Building on the significant concepts, sensitivity and limit of detection, we describe how the performance of voltammetric immunosensors can be improved by various sensitivity amplification mechanisms: (1) construction of labels with a high loading of signal species; (2) introduction of interfacial reaction initiated by functionalized nanomaterials; (3) building a synergistic connection between labels and substrate. The review ends with a summary of the shortage of current sensitivity amplified immunosensors and the perspective of enhancement strategies for more simple, efficient, and reliable voltammetric immunosensors.


Subject(s)
Biosensing Techniques , Nanostructures , Biomarkers, Tumor , Electrochemical Techniques , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...