Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Med ; 3(8): 568-578.e3, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35679856

ABSTRACT

BACKGROUND: Emerging evidence suggests heterologous prime-boost COVID-19 vaccination as a superior strategy than homologous schedules. Animal experiments and clinical observations have shown enhanced antibody response against influenza variants after heterologous vaccination; however, whether the inoculation order of COVID-19 vaccines in a prime-boost schedule affects antibody response against SARS-CoV-2 variants is not clear. METHODS: We conducted immunological analyses in a cohort of health care workers (n = 486) recently vaccinated by three types of inactivated COVID-19 vaccines under homologous or heterologous prime-boost schedules. Antibody response against ancestral SARS-CoV-2 (Wuhan-Hu-1) was assessed by total antibody measurements, surrogate virus neutralization tests, and pseudovirus neutralization assays (PNA). Furthermore, serum neutralization activity against SARS-CoV-2 variants of concern was also measured by PNA. FINDINGS: We observed strongest serum neutralization activity against the widely circulating SARS-CoV-2 variant B.1.617.2 among recipients of heterologous BBIBP-CorV/CoronaVac and WIBP-CorV/CoronaVac. In contrast, recipients of CoronaVac/BBIBP-CorV and CoronaVac/WIBP-CorV showed significantly lower B.1.617.2 neutralization titers than recipients of reverse schedules. Laboratory tests revealed that neutralizing activity against common variants but not the ancestral SARS-CoV-2 was associated with the inoculation order of heterologous prime-boost vaccines. Multivariable regression analyses confirmed this association after adjusting for known confounders. CONCLUSIONS: Our data provide clinical evidence of inoculation order-dependent expansion of neutralizing breadth against SARS-CoV-2 in recipients of heterologous prime-boost vaccination and call for further studies into its underlying mechanism. FUNDING: National Key R&D Program of China, National Development and Re-form Commission of China, National Natural Science Foundation of China, Shenzhen Science and Technology Innovation Commission, and US Department of Veterans Affairs.


Subject(s)
COVID-19 , Influenza Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , United States , Vaccination
3.
Signal Transduct Target Ther ; 6(1): 368, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645784

ABSTRACT

The long-term immunity and functional recovery after SARS-CoV-2 infection have implications in preventive measures and patient quality of life. Here we analyzed a prospective cohort of 121 recovered COVID-19 patients from Xiangyang, China at 1-year after diagnosis. Among them, chemiluminescence immunoassay-based screening showed 99% (95% CI, 98-100%) seroprevalence 10-12 months after infection, comparing to 0.8% (95% CI, 0.7-0.9%) in the general population. Total anti-receptor-binding domain (RBD) antibodies remained stable since discharge, while anti-RBD IgG and neutralization levels decreased over time. A predictive model estimates 17% (95% CI, 11-24%) and 87% (95% CI, 80-92%) participants were still 50% protected against detectable and severe re-infection of WT SARS-CoV-2, respectively, while neutralization levels against B.1.1.7 and B.1.351 variants were significantly reduced. All non-severe patients showed normal chest CT and 21% reported COVID-19-related symptoms. In contrast, 53% severe patients had abnormal chest CT, decreased pulmonary function or cardiac involvement and 79% were still symptomatic. Our findings suggest long-lasting immune protection after SARS-CoV-2 infection, while also highlight the risk of immune evasive variants and long-term consequences for COVID-19 survivors.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunologic Memory , Models, Immunological , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/diagnostic imaging , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Tomography, X-Ray Computed
4.
Front Oncol ; 10: 591937, 2020.
Article in English | MEDLINE | ID: mdl-33363022

ABSTRACT

BACKGROUND: Acute myelogenous leukemia (AML) is a common pediatric malignancy in children younger than 15 years old. Although the overall survival (OS) has been improved in recent years, the mechanisms of AML remain largely unknown. Hence, the purpose of this study is to explore the differentially methylated genes and to investigate the underlying mechanism in AML initiation and progression based on the bioinformatic analysis. METHODS: Methylation array data and gene expression data were obtained from TARGET Data Matrix. The consensus clustering analysis was performed using ConsensusClusterPlus R package. The global DNA methylation was analyzed using methylationArrayAnalysis R package and differentially methylated genes (DMGs), and differentially expressed genes (DEGs) were identified using Limma R package. Besides, the biological function was analyzed using clusterProfiler R package. The correlation between DMGs and DEGs was determined using psych R package. Moreover, the correlation between DMGs and AML was assessed using varElect online tool. And the overall survival and progression-free survival were analyzed using survival R package. RESULTS: All AML samples in this study were divided into three clusters at k = 3. Based on consensus clustering, we identified 1,146 CpGs, including 40 hypermethylated and 1,106 hypomethylated CpGs in AML. Besides, a total 529 DEGs were identified, including 270 upregulated and 259 downregulated DEGs in AML. The function analysis showed that DEGs significantly enriched in AML related biological process. Moreover, the correlation between DMGs and DEGs indicated that seven DMGs directly interacted with AML. CD34, HOXA7, and CD96 showed the strongest correlation with AML. Further, we explored three CpG sites cg03583857, cg26511321, cg04039397 of CD34, HOXA7, and CD96 which acted as the clinical prognostic biomarkers. CONCLUSION: Our study identified three novel methylated genes in AML and also explored the mechanism of methylated genes in AML. Our finding may provide novel potential prognostic markers for AML.

SELECTION OF CITATIONS
SEARCH DETAIL
...