Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(37): 34091-34099, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31433618

ABSTRACT

Surface-enhanced Raman scattering (SERS) has been widely established as a powerful analytical technique in molecular fingerprint recognition. Although conventional noble metal-based SERS substrates show admirable enhancement of the Raman signals, challenges on reproducibility, biocompatibility, and costs limit their implementations as the preferred analysis platforms. Recently, researches on SERS substrates have found that some innovatively prepared metal oxides/chalcogenides could produce noble metal comparable SERS enhancement, which profoundly expanded the material selection. Nevertheless, to tune the SERS enhancement of these materials, careful experimental designs and sophisticated processes were needed. Here, an electrically tunable SERS substrate based on tungsten oxides (WO3-x) is demonstrated. An electric field is used to introduce the defects in the oxide on an individual substrate, readily invoking the SERS detection capability, and further tuning the enhancement factor is achieved through electrical programming of the oxide leakage level. Additionally, by virtue of in situ tuning the defect density and enhancement factor, the substrate can adapt to different molecular concentrations, potentially improving the detection range. These results not only help build a better understanding of the chemical mechanism but also open an avenue for engaging non-noble metal materials as multifunctional SERS substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...