Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(28): 15374-15383, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34259266

ABSTRACT

The use of the conventional pressure-composition-temperature (PCT) method to determine the thermodynamics of metal hydrides is a time-consuming process. This work presents an efficient method based on thermogravimetric analysis (TGA), to characterize the thermodynamic parameters. Through cycling catalyzed magnesium hydride in a TGA apparatus under a flowing gas with a constant hydrogen partial pressure, TGA curves can be used to determine absorption/desorption equilibrium temperatures. Based on the van't Hoff analysis, the reaction enthalpies and entropies can be derived from the equilibrium temperatures as a function of hydrogen pressure. Using the results of this work we calculated the hydrogenation and dehydrogenation enthalpies, which are 79.8 kJ per mol per H2 and 76.5 kJ per mol per H2, respectively. These values are in good agreement with those reported values using the PCT method. These results demonstrate that the TGA can be an efficient and effective method for measuring thermodynamic parameters of metal hydrides.

2.
ACS Appl Mater Interfaces ; 11(42): 38868-38879, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31559817

ABSTRACT

Magnesium hydride has long been regarded as a promising candidate material for hydrogen and heat storage due to its high hydrogen capacity, reversibility, and low cost. Catalytic doping has been demonstrated as one of the most effective methods to improve hydrogen storage properties of MgH2. In this study, amorphous Ti45Cu41Ni9Zr5 and Ti40Cu47Zr10Sn3 alloys are used as additives for MgH2. Nanostructured MgH2 doped with amorphous or crystalline TiCu-based alloys are prepared by using a high-energy mechanochemical synthesis method. Results show that the amorphous TiCu additives provide enhanced catalytic effects compared to crystalline alloys of the same composition. Doping MgH2 using an amorphous Ti45Cu41Ni9Zr5 alloy yielded improved dehydrogenation kinetics compared to using crystalline Ti40Cu47Zr10Sn3 alloy. The analysis using transmission electron microscopy reveals that there are nanostructured catalytic particles uniformly distributed in the amorphous TiCu-catalyzed MgH2. The MgH2 system catalyzed by amorphous TiCu-based alloy shows little degradation during hydrogenation and dehydrogenation cycling at 300 °C. The amorphous TiCu-based catalysts are thermally stable at temperatures up to 360 °C. Heating the amorphous Ti45Cu41Ni9Zr5-catalyzed MgH2 to temperatures above 360 °C led to disproportionation of the catalyst alloy and the formation of MgCu2 and Ti2Cu. In addition, PCI analysis of the amorphous Ti45Cu41Ni9Zr5-catalyzed MgH2 shows a slight increase in hydrogen equilibrium pressure, resulting in a reaction enthalpy of -78.7 kJ/mol·H2 and an entropy of 145.0 J/K·mol·H2. The entropy calculated from this study is approximately 10 J/K·mol·H2 higher than values previously reported for undoped and catalyzed Mg-H systems.

3.
J Am Chem Soc ; 138(22): 6916-9, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27196140

ABSTRACT

Reactive metals including Ti, Zr, Hf, and V, among others, have a strong chemical affinity to oxygen, which makes them difficult to produce and costly to use. It is especially challenging to produce pure or metal alloy powders of these elements when extremely low oxygen content is required, because they have high solubility for oxygen, and the solid solution of these metals with oxygen is often more stable thermodynamically than their oxides. We report a novel thermochemical approach to destabilize Ti(O) solid solutions using hydrogen, thus enabling deoxygenation of Ti powder using Mg, which has not been possible before because of the thermodynamic stability of Ti(O) solid solutions relative to MgO. The work on Ti serves as an example for other reactive metals. Both analytical modeling and experimental results show that hydrogen can indeed increase the oxygen potential of Ti-O solid solution alloys; in other words, the stability of Ti-O solid solutions is effectively decreased, thus increasing the thermodynamic driving force for Mg to react with oxygen in Ti. Because hydrogen can be easily removed from Ti by a simple heat treatment, it is used only as a temporary alloying element to destabilize the Ti-O systems. The thermodynamic approach described here is a breakthrough and is applicable to a range of different materials. This work is expected to provide an enabling solution to overcome one of the key scientific and technological hurdles to the additive manufacturing of metals, which is emerging rapidly as the future of the manufacturing industry.

4.
J Am Chem Soc ; 135(30): 10982-5, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23855837

ABSTRACT

Efforts to thermodynamically destabilize magnesium hydride (MgH2), so that it can be used for practical hydrogen storage applications, have been a difficult challenge that has eluded scientists for decades. This letter reports that MgH2 can indeed be destabilized by forming solid solution alloys of magnesium with group III and IVB elements, such as indium. Results of this research showed that the equilibrium hydrogen pressure of a Mg-0.1In alloy is 70% higher than that of pure MgH2. The temperature at 1 bar hydrogen pressure (T1bar) of Mg-0.1In alloy was reduced to 262.9 °C from 278.9 °C, which is the T1bar of pure MgH2. Furthermore, the kinetic rates of dehydrogenation of Mg-0.1In alloy hydride doped with a titanium intermetallic (TiMn2) catalyst were also significantly improved compared with those of MgH2.

SELECTION OF CITATIONS
SEARCH DETAIL
...