Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611765

ABSTRACT

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Subject(s)
Carica , Carica/genetics , Anthocyanins , Plant Growth Regulators , Transcriptome , Tandem Mass Spectrometry , Metabolome , Vegetables
2.
Front Plant Sci ; 13: 1038598, 2022.
Article in English | MEDLINE | ID: mdl-36618670

ABSTRACT

Colletotrichum brevisporum is an important causal pathogen of anthracnose that seriously affects the fruit quality and yield of papaya (Carica papaya L.). Although many genes and biological processes involved in anthracnose resistance have been reported in other species, the molecular mechanisms involved in the response or resistance to anthracnose in post-harvest papaya fruits remain unclear. In this study, we compared transcriptome changes in the post-harvest fruits of the anthracnose-susceptible papaya cultivar Y61 and the anthracnose-resistant cultivar G20 following C. brevisporum inoculation. More differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElnRNAs) were identified in G20 than in Y61, especially at 24 h post-inoculation (hpi), suggesting a prompt activation of defense responses in G20 in the first 24 h after C. brevisporum inoculation. These DEGs were mainly enriched in plant-pathogen interaction, phenylpropanoid biosynthesis/metabolism, and peroxisome and flavonoid biosynthesis pathways in both cultivars. However, in the first 24 hpi, the number of DEGs related to anthracnose resistance was greater in G20 than in Y61, and changes in their expression levels were faster in G20 than in Y61. We also identified a candidate anthracnose-resistant gene cluster, which consisted of 12 genes, 11 in G20 and Y61, in response to C. brevisporum inoculation. Moreover, 529 resistance gene analogs were identified in papaya genome, most of which responded to C. brevisporum inoculation and were genetically different between papaya cultivars and wild-type populations. The total expression dose of the resistance gene analogs may help papaya resist C. brevisporum infection. This study revealed the mechanisms underlying different anthracnose resistance between the anthracnose-resistant and anthracnose-susceptible cultivars based on gene expression, and identified some potential anthracnose resistance-related candidate genes/major regulatory factors. Our findings provided potential targets for developing novel genetic strategies to overcome anthracnose in papaya.

3.
PeerJ ; 8: e9319, 2020.
Article in English | MEDLINE | ID: mdl-32704439

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors (TFs) have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya (Carica papaya L.) has been reported previously. Here, a total of 73 CpbHLHs were identified in papaya, and these genes were classified into 18 subfamilies based on phylogenetic analysis. Almost all of the CpbHLHs in the same subfamily shared similar gene structures and protein motifs according to analysis of exon/intron organizations and motif compositions. The number of exons in CpbHLHs varied from one to 10 with an average of five. The amino acid sequences of the bHLH domains were quite conservative, especially Leu-27 and Leu-63. Promoter cis-element analysis revealed that most of the CpbHLHs contained cis-elements that can respond to various biotic/abiotic stress-related events. Gene ontology (GO) analysis revealed that CpbHLHs mainly functions in protein dimerization activity and DNA-binding, and most CpbHLHs were predicted to localize in the nucleus. Abiotic stress treatment and quantitative real-time PCR (qRT-PCR) revealed some important candidate CpbHLHs that might be responsible for abiotic stress responses in papaya. These findings would lay a foundation for further investigate of the molecular functions of CpbHLHs.

4.
Food Chem ; 145: 984-90, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24128573

ABSTRACT

We investigated the effects of granulation on organic acid metabolism and its relation to mineral elements in 'Guanximiyou' pummelo (Citrus grandis) juice sacs. Granulated juice sacs had decreased concentrations of citrate and isocitrate, thus lowering juice sac acidity. By contrast, malate concentration was higher in granulated juice sacs than in normal ones. The reduction in citrate concentration might be caused by increased degradation, as indicated by enhanced aconitase activity, whilst the increase in malate concentration might be caused by increased biosynthesis, as indicated by enhanced phosphoenolpyruvate carboxylase (PEPC). Real time quantitative reverse transcription PCR (qRT-PCR) analysis showed that the activities of most acid-metabolizing enzymes were regulated at the transcriptional level, whilst post-translational modifications might influence the PEPC activity. Granulation led to increased accumulation of mineral elements (especially phosphorus, magnesium, sulphur, zinc and copper) in juice sacs, which might be involved in the incidence of granulation in pummelo fruits.


Subject(s)
Acids, Acyclic/metabolism , Beverages/analysis , Citrus/chemistry , Food Handling , Fruit/chemistry , Trace Elements/analysis , Acids, Acyclic/analysis , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , China , Citric Acid/analysis , Citric Acid/metabolism , Citrus/enzymology , Citrus/metabolism , Copper/analysis , Enzyme Stability , Fruit/enzymology , Fruit/metabolism , Gene Expression Regulation, Enzymologic , Isocitrates/analysis , Isocitrates/metabolism , Magnesium/analysis , Malates/analysis , Malates/metabolism , Particle Size , Phosphoenolpyruvate Carboxylase/biosynthesis , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Phosphorus/analysis , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Sulfur/analysis , Zinc/analysis
5.
BMC Genomics ; 14: 621, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-24034812

ABSTRACT

BACKGROUND: Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were irrigated for 17 weeks with nutrient solution containing 2 µM (control) or 600 µM (Mn-toxicity) MnSO4. The objectives of this study were to understand the mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in Mn-tolerance. RESULTS: Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis seedling growth, leaf CO2 assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis leaves. They were grouped into the following functional categories: biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms; (5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein metabolisms, stress responses and cell transport. CONCLUSIONS: Our results demonstrated that C. sinensis was more tolerant to Mn-toxicity than C. grandis, and that Mn-toxicity affected gene expression far less in C. sinensis leaves. This might be associated with more Mn accumulation in roots and less Mn accumulation in leaves of Mn-toxicity C. sinensis seedlings than those of C. grandis seedlings. Our findings increase our understanding of the molecular mechanisms involved in the responses of plants to Mn-toxicity.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Citrus/genetics , Manganese/toxicity , Plant Leaves/physiology , Citrus/physiology , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Leaves/genetics , Plant Roots/physiology , Seedlings/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...