Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(9): 14135-14155, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270763

ABSTRACT

COVID-19 and other respiratory infectious viruses are highly contagious, and patients need to be treated in negative pressure wards. At present, many negative pressure wards use independent air conditioning equipment, but independent air conditioning equipment has problems such as indoor air circulation flow, condensate water accumulation, and improper filter maintenance, which increase the risk of infection for healthcare workers and patients. The radiation air conditioning system relies on the radiation ceiling to control the indoor temperature and uses new air to control the indoor humidity and air quality. The problems caused by the use of independent air conditioning equipment should be avoided. This paper studies the thermal comfort, contaminant distribution characteristics, contaminant removal efficiency, and accessibility of supply air in a negative pressure ward with a radiation air conditioning system under three airflow patterns. In addition, the negative pressure ward was divided into 12 areas, and the infection probability of healthcare workers in different areas was analyzed. The results show that the application of radiation air conditioning systems in negative pressure wards can ensure the thermal comfort of patients. Stratum ventilation and ceiling-attached jets have similar effects in protecting healthcare workers; both can effectively reduce the contaminant concentrations and the risk of infection of healthcare workers. Ceiling-attached jets decreases the contaminant concentrations by 10.73%, increases the contaminant removal efficiency by 12.50%, and decreases the infection probability of healthcare workers staying indoors for 10 min by 23.18%, compared with downward ventilation.


Subject(s)
Air Pollution, Indoor , Air Pollution , Humans , Air Pollution, Indoor/analysis , Patient Isolators , Air Conditioning , Temperature , Ventilation/methods
2.
Materials (Basel) ; 13(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344748

ABSTRACT

In this study, recycled aggregate concrete (RAC) modified with polypropylene fiber (PP) and air-entraining agent (AGA) was prepared, and the effects of PP and AGA on the static (compressive strength, Young's modulus, and splitting tensile strength) and dynamic properties (dynamic modulus of elasticity and damping ratio) of RAC were investigated. The experimental results showed that the addition of an AGA and PP had a favorable effect on the damping ratio of the concrete, however, the addition of the AGA had a slightly negative effect on the mechanical performance of the concrete. The AGA and PP contents required to achieve the optimum damping ratio of the concrete with the least reduction in the mechanical performance were 0.02% and 0.10%, respectively. Furthermore, the addition of AGA was more effective than that of PP in improving the damping property of the concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...