Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(6): e0054923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37222617

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.


Subject(s)
Coronavirus Infections , Endoplasmic Reticulum Chaperone BiP , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Swine Diseases , Virus Internalization , Animals , Chlorocebus aethiops , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Lysosomes/metabolism , Lysosomes/virology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Swine , Swine Diseases/physiopathology , Swine Diseases/virology , Vero Cells , Endoplasmic Reticulum Chaperone BiP/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Virus Attachment , Endocytosis/genetics
2.
Article in English | MEDLINE | ID: mdl-36644440

ABSTRACT

Aim: Hyperuricemia (HUA) has received increased attention in the last few decades due to its global prevalence. Our previous study found that administration of a macroporous resin extract of Dendrobium officinale leaves (DoMRE) to rats with HUA that was induced by exposure to potassium oxazine combined with fructose and a high-purine diet led to a significant reduction in serum uric acid (SUA) levels. The aim of this study was to explore the effects of DoMRE on hyperuricemia induced by anthropomorphic unhealthy lifestyle and to elucidate its possible mechanisms of action. Methods: Dosages (5.0 and 10.0 g/kg/day) of DoMRE were administered to rats daily after induction of HUA by anthropomorphic unhealthy lifestyle for 12 weeks. The levels of UA in the serum, urine, and feces; the levels of creatinine (Cr) in the serum and urine; and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were all measured using an automatic biochemical analyzer. The activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the serum, liver, and intestine tissue supernatant were measured using appropriate kits for each biological target. The expressions levels of UA transporters (ABCG2 and GLUT9), tight junction (TJ) proteins (ZO-1 and occludin), and inflammatory factors (IL-6, IL-8, and TNF-α) in the intestine were assayed by immunohistochemical (IHC) staining. Hematoxylin and eosin (H&E) staining was used to assess histological changes in the renal and intestinal tissues. Results: DoMRE treatment significantly reduced SUA levels and concomitantly increased fecal UA (FUA) levels and the fractional excretion of UA (FEUA) in HUA rats. Furthermore, DoMRE significantly reduced both the XOD activity in the serum, liver, and intestine and the ADA activity in the liver and intestine. DoMRE also effectively regulated the expression of GLUT9 and ABCG2 in the intestine, and it significantly upregulated the expression of the intestinal TJ proteins ZO-1 and occludin. Therefore, DoMRE reduced the damage to the intestinal barrier function caused by the increased production of inflammatory factors due to HUA to ensure normal intestinal UA excretion. Conclusion: DoMRE demonstrated anti-HUA effects in the HUA rat model induced by an anthropomorphic unhealthy lifestyle, and the molecular mechanism appeared to involve the regulation of urate transport-related transporters (ABCG2 and GLUT9) in the intestine, protection of the intestinal barrier function to promote UA excretion, and inhibition of XOD and ADA activity in the liver and intestine to inhibit UA production in the HUA-induced rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...