Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 26153-26166, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718343

ABSTRACT

Photothermal conversion materials are critical in the development of solar-driven interfacial evaporation techniques; however, achieving a high energy conversion efficiency remains challenging owing to the high cost and instability of light-absorbing materials, in addition to the difficulties of simultaneously improving light absorption while suppressing heat loss. A black silicon (Si) powder with a porous structure was prepared by chemical etching of a low-cost commercial micron-sized Al-Si alloy, and a flexible Janus black Si photothermal conversion membrane was constructed. The partially broken spherical particles and porous structure obtained after etching enhanced the refraction of light from the Si powder, imparting the prepared membrane with an average light absorption rate of 95.95% over the solar spectrum. Evaporation from the membrane increased the intermediate water content and reduced the equivalent evaporation enthalpy. The thermal conduction loss was inhibited through a one-dimensional water transport structure, and the membrane achieved a water evaporation rate of 2.17 kg m-2 h-1 and a photothermal efficiency of 94.95% under 1 sun illumination. Benefiting from the broadband absorption and high photothermal efficiency of black Si powder, surface modification of hydrophobic polydimethylsiloxane, and directional salt-out structure design, the evaporation rate of the Janus black Si membrane-based system in a 10% NaCl solution was maintained >2.10 kg m-2 h-1 after 7 days of continuous evaporation cycles. The removal rate of metal ions from simulated seawater and from practical wastewater containing complex heavy metals reached >99.9%, indicating the promising potential of black Si membrane for application in solar-driven interfacial water purification.

2.
Nanoscale ; 15(40): 16466-16471, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37791634

ABSTRACT

Sonodynamic therapy (SDT), an emerging treatment for solid tumors, has the advantages of deep tissue penetration, non-invasiveness, low side effects, and negligible drug resistance. However, the hypoxic environment of deep solid tumors can discount the efficacy of oxygenated dependent SDT. Here, we synthesized a polythiophene-based sonosensitizer (PT2) and a two-dimensional pleated niobium carbide (Nb2C) Mxene. PT2 was loaded onto the surface of poly(vinylpyrrolidone) (PVP)-coated Nb2C MXene through electrostatic interaction to obtain Nb2C-PVP-PT2 nanosheets (NSs) with a high loading efficiency of 153.7%. Nb2C MXene exhibited catalase-like activity, which could catalyze hydrogen peroxide (H2O2) to produce O2, in turn alleviating tumor hypoxia and enhancing the efficacy of SDT. The depletion of H2O2 further results in abnormal cellular H2O2 levels and reduced tumor cell activity. Moreover, the decomposed NSs led to the release of the sonosensitizer PT2 that can efficiently generate both singlet oxygen and superoxide anions under ultrasound irradiation. These events led to the inhibition of DNA replication of tumor cells, causing tumor cell death, allowing for enhanced SDT efficacy.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Catalase , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...