Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30014, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699009

ABSTRACT

Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.

2.
Front Psychiatry ; 15: 1388946, 2024.
Article in English | MEDLINE | ID: mdl-38812484

ABSTRACT

Mounting evidence has identified the rapid and sustained antidepressive and anxiolytic-like effects of esketamine. However, the underlying mechanism of this no-monoamine target rapid-onset antidepressant is still underexplored. Immune-inflammatory pathways and cell-mediated immune activation, mainly including inflammatory cytokines in plasma, play a pivotal role in the pathogenesis of major depressive disorder and are also a potential therapeutic target for MDD. The current study was designed to clarify the role of esketamine on the expression of plasma cytokines in a depressive-like model introduced by chronic variable stress (CVS). In this study, a 21-day consecutive CVS protocol was applied to produce depressive- and anxiety-like behaviors. After the single dose or 7-day repeated administration of esketamine or fluoxetine, the depressive- and anxiety-like behaviors and the expression of inflammatory cytokines in plasma were examined. Both a single dose of esketamine and 7-days repeated fluoxetine administration elicited anti-depressive and anxiolytic effects in mice exposed to CVS. Additionally, CVS produced significant changes in the plasma inflammatory factors, notably increasing the expression of IL-1ß, IL-6, IL-8, IL-17A, TNFα, IL-4, IL-9, IL-24, IL-37, IFN-ß, and CXCL12, while reducing IL-10 and IL-33. With the administration of esketamine and fluoxetine, CVS-produced inflammatory disturbances were partially normalized. Together, our findings provide a novel insight that acute esketamine treatment could rescue CVS-produced depressive-like and anxiety-like behaviors in mice by normalizing the expression of inflammatory cytokines; this effect was similar to the repeated administration of fluoxetine. These results contributed to the understating of rapid anti-depressant effects elicited by esketamine.

3.
Environ Sci Pollut Res Int ; 31(8): 12528-12542, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233712

ABSTRACT

Fast increased amount of excess activated sludge (EAS) from wastewater treatment plants has aroused universal concerns on its environmental risks and demands for appropriate treatments, while effective treatment is dependent upon proper pretreatment. In this study, air-supplied microbubbles (air-MBs) with generated size of 25.18 to 28.25 µm were used for EAS pretreatment. Different durations (30, 60, 90, and 120 s) yielded sludge with varied physiochemical conditions, and 60 s decreased sludge oxidation status and significantly increased adenosine triphosphate (ATP) content. Soluble, loosely-bound, and tightly-bound extracellular polymeric substances (SEPS, LB-EPS, and TB-EPS) were extracted from the sludge through a stepwise approach and examined through three-dimensional excitation-emission matrix (3D-EEM) and quantitative analysis. The results showed that 60- and 120-s treatments generated stronger fluorescence intensities on dissolved organic matters (DOMs) of protein-like and fulvic acid in LB-EPS and TB-EPS, which indicated the decrease of counterparts in EAS, and therefore facilitated sludge dewaterability and reduction. The dominant microbial communities in EAS, including Proteobacteria, Bacteroidota, Chloroflexi, and Actinobacteriota, were not significantly affected by MB pretreatment. The results collectively revealed the effects of MB pretreatment on EAS and indicated that MBs could be an effective pretreatment technique for EAS treatment process.


Subject(s)
Sewage , Water Purification , Sewage/chemistry , Microbubbles , Proteins/analysis , Extracellular Polymeric Substance Matrix/chemistry , Waste Disposal, Fluid/methods
4.
CNS Neurosci Ther ; 29(11): 3549-3566, 2023 11.
Article in English | MEDLINE | ID: mdl-37269082

ABSTRACT

INTRODUCTION: Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS: Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS: CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION: These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.


Subject(s)
Gastrointestinal Microbiome , Transcranial Magnetic Stimulation , Mice , Animals , Depression/therapy , Depression/metabolism , Brain/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Hippocampus/metabolism , Stress, Psychological/therapy , Stress, Psychological/metabolism
5.
Front Cell Neurosci ; 17: 1135227, 2023.
Article in English | MEDLINE | ID: mdl-37091920

ABSTRACT

Introduction: This study aimed to identify the effect of electroacupuncture (EA) treatment on post-stroke depression (PSD) and explore whether cannabinoid receptor 1 (CB1R)-mediated mitochondrial biogenesis accounts for the treatment effect of EA. Methods: The PSD mouse model was induced by a consecutive 14-day chronic unpredictable stress operation after 7 days of recovery from the bilateral common carotid artery occlusion surgery. Either EA treatment or sham stimulation was performed for 14 consecutive days from Day 7 after the BCCAO operation. Subjects' PSD-like behaviors were tested via open field test, sucrose preference test, novelty suppressed feeding test, tail suspension test, and forced swim test, and subjects' cognitive function was examined using Y-maze and novelty object recognition test. In addition, the levels of CB1R, mitochondrial biogenesis-related proteins (nuclear transcription factor 1, NRF1; mitochondrial transcription factor A, TFAM), proteins related to mitochondrial function (Cytochrome C, Cyto C; AIF, COX IV), and mitochondrial DNA were measured. To elucidate the role of CB1R in EA treatment, CB1R antagonists AM251 and CB1R-shRNA were given to mice before EA treatment. Likewise, subjects' depressive-like behaviors, cognitive function, mitochondrial function, and mitochondrial biogenesis were examined after the PSD procedure. Results: It has been showed that EA successfully ameliorated depressive-like behaviors, improved cognitive dysfunctions, and upregulated CB1R, NRF1 and TFAM expressions. However, the supplementation of AM251 and CB1R-shRNA blocked the antidepressant-like effects generated by EA, and EA failed to improve cognitive dysfunction, upregulate CB1R protein expression, and increase mitochondrial function and biogenesis. Conclusion: Altogether, these results indicated that EA ameliorated PSD-like behaviors in mice, improved cognitive dysfunctions after PSD, and promoted mitochondrial biogenesis by activating CB1R, a novel mechanism underlying EA's antidepressant-like effects in treating PSD.

6.
Front Cell Neurosci ; 17: 1114914, 2023.
Article in English | MEDLINE | ID: mdl-36874216

ABSTRACT

Introduction: Compelling evidence indicates that a single sub-anesthetic dose of (S)-ketamine elicits rapid and robust antidepressant effects. However, the underlying mechanisms behind the antidepressant effects of (S)-ketamine remain unclear. Methods: Here, using a chronic variable stress (CVS) model in mice, we analyzed changes inthe lipid compositions of the hippocampus and prefrontal cortex (PFC) with a mass spectrometry-based lipidomic approach. Results: Similar to previous research outcomes, the current study also showed that (S)-ketamine reversed depressive-like behaviors in mice produced by CVS procedures. Moreover, CVS induced changes inthe lipid compositions of the hippocampus and PFC, notably in the contents of sphingolipids, glycerolipids, and fatty acyls. With the administration of (S)-ketamine, CVS-induced lipid disturbances were partially normalized, particularly in the hippocampus. Conclusion: Altogether, our results indicated that (S)-ketamine could rescue CVS-induced depressive-like behaviors in mice through region-specific modulation of the brain lipidome, contributing to the understanding of (S)-ketamine's antidepressant effects.

7.
J Affect Disord ; 331: 217-228, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36965621

ABSTRACT

BACKGROUND: Neural oscillations play a role in the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS). However, the effects of high-frequency rTMS on the neural oscillations of the medial prefrontal cortex (mPFC) and hippocampus (HPC) and its molecular mechanism have not been fully clarified. METHODS: The depressive-like behaviours, local field potentials (LFPs) of the ventral HPC (vHPC)-mPFC, and alternations of endocannabinoid system (ECS) in the HPC and mPFC were observed after rTMS treatment. Meanwhile, depressive-like behaviours and LFPs were also observed after cannabinoid type-1 receptor (CB1R) antagonist AM281 or monoacylglycerol lipase inhibitor JZL184 injection. Moreover, the antidepressant effect of rTMS was further assessed in glutamatergic-CB1R and gamma-amino butyric acid (GABA)-ergic -CB1R knockout mice. RESULTS: Alternations of endocannabinoids and energy value and synchronisation of mPFC-vHPC, especially the decrease of theta oscillation induced by CUMS, were alleviated by rTMS. JZL184 has similar effects to rTMS and AM281 blocked the effects of rTMS. GABAergic-CB1R deletion inhibited CUMS-induced depressive-like behaviours whereas Glutaminergic-CB1R deletion dampened the antidepressant effects of rTMS. LIMITATIONS: The immediate effect of rTMS on field-potential regulation was not observed. Moreover, the role of region-specific regulation of the ECS in the antidepressant effect of rTMS was unclear and the effects of cell-specific CB1R knockout on neuronal oscillations of the mPFC and vHPC should be further investigated. CONCLUSION: Endocannabinoid system mediated the antidepressant effects and was involved in the regulation of LFP in the vHPC-mPFC of high-frequency rTMS.


Subject(s)
Endocannabinoids , Transcranial Magnetic Stimulation , Mice , Animals , Endocannabinoids/pharmacology , Prefrontal Cortex/physiology , Mice, Knockout , Hippocampus
8.
Medicina (Kaunas) ; 59(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837614

ABSTRACT

Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.


Subject(s)
Depressive Disorder, Major , Fatty Acids, Omega-3 , Schizophrenia , Humans , Adult , Tryptophan , Reproducibility of Results , Fatty Acids/metabolism
9.
CNS Neurosci Ther ; 29 Suppl 1: 5-17, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36468448

ABSTRACT

INTRODUCTION: Gut microbial disturbance has been established as potential pathogenesis of mental disorders. However, the signatures and differences regarding patients with schizophrenia (SCH) or bipolar disorder (BD) in emerging adulthood as well as their subtypes have been poorly addressed. METHODS: In the present study, stool samples obtained from 63 emerging adult patients with schizophrenia (SCH), 50 with bipolar disorder (BD), and 40 healthy controls (HC) were analyzed by 16 S rRNA gene sequencing; psychiatric symptoms and psychological, social, and professional functioning were also assessed. RESULTS: We found that gut microbiota composition was remarkably changed in the patients with SCH and BD. Moreover, the distinct gut microbiome signatures and their potential function in bipolar depression (BP-D) and SCH with predominantly negative symptoms (SCH-N) as well as bipolar mania (BP-M) and SCH with predominantly positive symptoms (SCH-P) were also observed. Furthermore, we identified diagnostic potential biomarkers that can distinguish BD from HC (38 genera, AUC = 0.961), SCH from HC (32 genera, AUC = 0.962), and BD from Scheme (13 genera, AUC = 0.823). Potential diagnostic biomarkers that can distinguish BD-D from SCH-N (16 genera, AUC = 0.969) and BD-M from SCH-P (31 genera, AUC = 0.938) were also identified. CONCLUSION: This study provides further understanding of abnormal gut microbiome in emerging adulthood patients with SCH and BD and lay the potential foundation for the development of microbe-based clinical diagnosis for BD and SCH.


Subject(s)
Bipolar Disorder , Gastrointestinal Microbiome , Schizophrenia , Adult , Humans , Bipolar Disorder/diagnosis , Biomarkers
10.
Medicina (Kaunas) ; 58(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36363466

ABSTRACT

Background and Objectives: Lipidomics is a pivotal tool for investigating the pathogenesis of mental disorders. However, studies qualitatively and quantitatively analyzing peripheral lipids in adult patients with schizophrenia (SCZ) and major depressive disorder (MDD) are limited. Moreover, there are no studies comparing the lipid profiles in these patient populations. Materials and Method: Lipidomic data for plasma samples from sex- and age-matched patients with SCZ or MDD and healthy controls (HC) were obtained and analyzed by liquid chromatography-mass spectrometry (LC-MS). Results: We observed changes in lipid composition in patients with MDD and SCZ, with more significant alterations in those with SCZ. In addition, a potential diagnostic panel comprising 103 lipid species and another diagnostic panel comprising 111 lipid species could distinguish SCZ from HC (AUC = 0.953) or SCZ from MDD (AUC = 0.920) were identified, respectively. Conclusions: This study provides an increased understanding of dysfunctional lipid composition in the plasma of adult patients with SCZ or MDD, which may lay the foundation for identifying novel clinical diagnostic methods for these disorders.


Subject(s)
Depressive Disorder, Major , Schizophrenia , Adult , Humans , Depressive Disorder, Major/diagnosis , Schizophrenia/diagnosis , Lipidomics , Mass Spectrometry , Lipids
11.
Front Psychiatry ; 13: 927817, 2022.
Article in English | MEDLINE | ID: mdl-35923457

ABSTRACT

Lipidomics has been established as a potential tool for the investigation of mental diseases. However, the composition analysis and the comparison of the peripheral lipids regarding adult women with major depressive depression (MDD) or bipolar depression (BPD) has been poorly addressed. In the present study, age-matched female individuals with MDD (n = 28), BPD (n = 22) and healthy controls (HC, n = 25) were enrolled. Clinical symptoms were assessed and the plasma samples were analyzed by comprehensive lipid profiling based on liquid chromatography-mass spectrometry (LC/MS). We found that the composition of lipids was remarkably changed in the patients with MDD and BPD when compared to HC or compared to each other. Moreover, we identified diagnostic potential biomarkers comprising 20 lipids that can distinguish MDD from HC (area under the curve, AUC = 0.897) and 8 lipids that can distinguish BPD from HC (AUC = 0.784), as well as 13 lipids were identified to distinguish MDD from BPD with moderate reliability (AUC = 0.860). This study provides further understanding of abnormal lipid metabolism in adult women with MDD and BPD and may develop lipid classifiers able to effectively discriminate MDD from BPD and HC.

12.
Front Mol Neurosci ; 15: 812479, 2022.
Article in English | MEDLINE | ID: mdl-35221914

ABSTRACT

The neuroprotective effect of electroacupuncture (EA) treatment has been well studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of post-traumatic stress disorder (PTSD) and may be a target for treatment. However, the influence of early EA intervention on brain lipid composition in patients with PTSD has never been investigated. Using a modified single prolonged stress (mSPS) model in mice, we assessed the anti-PTSD-like effects of early intervention using EA and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. mSPS induced changes in lipid composition in the hippocampus, notably in the content of sphingolipids, glycerolipids, and fatty acyls. These lipid changes were more robust than those observed in the PFC. Early intervention with EA after mSPS ameliorated PTSD-like behaviors and partly normalized mSPS-induced lipid changes, notably in the hippocampus. Cumulatively, our data suggest that EA may reverse mSPS-induced PTSD-like behaviors due to region-specific regulation of the brain lipidome, providing new insights into the therapeutic mechanism of EA.

13.
Microsyst Nanoeng ; 7: 55, 2021.
Article in English | MEDLINE | ID: mdl-34567768

ABSTRACT

Assessment of lung and heart states is of critical importance for patients with pneumonia. In this study, we present a small-sized and ultrasensitive accelerometer for continuous monitoring of lung and heart sounds to evaluate the lung and heart states of patients. Based on two-stage amplification, which consists of an asymmetric gapped cantilever and a charge amplifier, our accelerometer exhibited an extremely high ratio of sensitivity to noise compared with conventional structures. Our sensor achieves a high sensitivity of 9.2 V/g at frequencies less than 1000 Hz, making it suitable to use to monitor weak physiological signals, including heart and lung sounds. For the first time, lung injury, heart injury, and both lung and heart injuries in discharged pneumonia patients were revealed by our sensor device. Our sound sensor also successfully tracked the recovery course of the discharged pneumonia patients. Over time, the lung and heart states of the patients gradually improved after discharge. Our observations were in good agreement with clinical reports. Compared with conventional medical instruments, our sensor device provides rapid and highly sensitive detection of lung and heart sounds, which greatly helps in the evaluation of lung and heart states of pneumonia patients. This sensor provides a cost-effective alternative approach to the diagnosis and prognosis of pneumonia and has the potential for clinical and home-use health monitoring.

14.
Front Neurosci ; 15: 706786, 2021.
Article in English | MEDLINE | ID: mdl-34335176

ABSTRACT

The protective effects of repetitive transcranial magnetic stimulation (rTMS) on myelin integrity have been extensively studied, and growing evidence suggests that rTMS is beneficial in improving cognitive functions and promoting myelin repair. However, the association between cognitive improvement due to rTMS and changes in brain lipids remains elusive. In this study, we used the Y-maze and 3-chamber tests, as well as a mass spectrometry-based lipidomic approach in a CPZ-induced demyelination model in mice to assess the protective effects of rTMS on cuprizone (CPZ)-induced cognitive impairment and evaluate changes in lipid composition in the hippocampus, prefrontal cortex, and striatum. We found that CPZ induced cognitive impairment and remarkable changes in brain lipids, specifically in glycerophospholipids. Moreover, the changes in lipids within the prefrontal cortex were more extensive, compared to those observed in the hippocampus and striatum. Notably, rTMS ameliorated CPZ-induced cognitive impairment and partially normalized CPZ-induced lipid changes. Taken together, our data suggest that rTMS may reverse cognitive behavioral changes caused by CPZ-induced demyelination by modulating the brain lipidome, providing new insights into the therapeutic mechanism of rTMS.

15.
Biomed Pharmacother ; 131: 110707, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32905942

ABSTRACT

The antipsychotic effect of Quetiapine (Que) has been extensively studied and growing evidence suggests that Que has a beneficial effect, improving cognitive functions and promoting myelin repair. However, the effects of Que on the brain lipidome and the association between Que-associated cognitive improvement and changes in lipids remain elusive. In the present study, we assessed the cognitive protective effects of Que treatment and used a mass spectrometry-based lipidomic approach to evaluated changes in lipid composition in the hippocampus, prefrontal cortex (PFC), and striatum in a mouse model of cuprizone (CPZ)-induced demyelination. CPZ induces cognitive impairment and remarkable lipid changes in the brain, specifically in lipid species of glycerophospholipids and sphingolipids. Moreover, the changes in lipid classes of the PFC were more extensive than those observed in the hippocampus and striatum. Notably, Que treatment ameliorated cuprizone-induced cognitive impairment and partly normalized CPZ-induced lipid changes. Taken together, our data suggest that Que may rescue cognitive behavioral changes from CPZ-induced demyelination through modulation of the brain lipidome, providing new insights into the pharmacological mechanism of Que for schizophrenia.


Subject(s)
Brain/drug effects , Cuprizone/toxicity , Lipidomics , Quetiapine Fumarate/pharmacology , Schizophrenia/drug therapy , Animals , Brain/metabolism , Cognition/drug effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Quetiapine Fumarate/therapeutic use , Schizophrenia/chemically induced
16.
Article in English | MEDLINE | ID: mdl-32325156

ABSTRACT

The antidepressant effect of repetitive transcranial magnetic stimulation (rTMS) has been extensively studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of depression and may be a targeted mechanism for treatment. However, the influence of rTMS on lipid composition and the differences between these effects compared to antidepressants like fluoxetine (Flx) have never been investigated. Using a chronic unpredictable stress (CUS) model in rats, we assessed the antidepressive effects of rTMS and Flx treatments and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. Both rTMS and Flx treatments ameliorated depressive-like behaviors induced by CUS. Moreover, changes in lipid composition, especially glycerophospholipids, sphingolipids, and glycerolipids induced by CUS in the hippocampus were more robust than those observed in the PFC. CUS led to decreased levels of 20 carbon-containing fatty acyls and polyunsaturated fatty acyls in the PFC, and decreased levels of acyl carnitines (AcCa) in both the hippocampus and PFC. Notably, rTMS treatment had higher impact than Flx on composition of glycerophospholipids and sphingolipids in the hippocampus that were altered by CUS, while Flx attenuated CUS-induced changes in the PFC to a greater extent than rTMS. However, neither was able to restore fatty acyls and AcCa to baseline levels. Altogether, modulation of the brain lipidome may be involved in the antidepressant action of rTMS and Flx, and the degree to which these treatments induce changes in lipid composition within the hippocampus and PFC might explain their differential antidepressant effects.


Subject(s)
Antidepressive Agents/therapeutic use , Brain Chemistry/drug effects , Depressive Disorder, Major/therapy , Fluoxetine/therapeutic use , Lipidomics , Selective Serotonin Reuptake Inhibitors/therapeutic use , Stress, Psychological/therapy , Transcranial Magnetic Stimulation , Animals , Behavior, Animal/drug effects , Chronic Disease , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Lipid Metabolism , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/drug therapy
17.
Asian J Psychiatr ; 51: 101992, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32145674

ABSTRACT

AIM: The aim of this study was to determine the efficacy and safety of cranial electrotherapy stimulation (CES) as an add-on treatment for TD. METHODS: A randomized, double-blind, sham-controlled trial was conducted at an outpatient, single-center academic setting. A total of 62 patients aged 6-17 years with TD and lack of clinical response to 4 weeks' pharmacotherapy were enrolled. Patients were divided randomly into 2 groups and given 4 weeks' treatment, including 30 min sessions of active CES (500 µA-2 mA) or sham CES (lower than 100 µA) per day for 40 d on weekdays. Change in Yale Global Tic Severity Scale (YGTSS), Clinical Global Impression-severity of illness-severity (CGI-S) and Hamilton Anxiety Scale-14 items (HAMA-14) were performed at baseline, week 2, week 4. Adverse events (AEs) were also evaluated. RESULTS: 53 patients (34 males and 9 females) completed the trial, including 29 in the active CES group and 24 in the sham CES group. Both groups showed clinical improvement in tic severities compared to baseline respectively at week 4. Participants receiving active CES showed a reduction of 31.66 % in YGTSS score, compared with 23.96 % in participants in sham CES group, resulting in no significant difference between the two groups (t = 1.54, p = 0.13). CONCLUSION: Four-week's treatment of CES for children and adolescents with TD is effective and safe, but the improvement for tic severity may be related to placebo effect.


Subject(s)
Electric Stimulation Therapy , Tic Disorders , Tourette Syndrome , Adolescent , Child , Double-Blind Method , Female , Humans , Male , Severity of Illness Index , Tic Disorders/therapy , Tourette Syndrome/therapy , Treatment Outcome
18.
Front Cell Neurosci ; 13: 275, 2019.
Article in English | MEDLINE | ID: mdl-31293390

ABSTRACT

Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain disorders. However, whether and via which exact molecular mechanisms it ameliorates post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats received EA stimulation for seven consecutive days before exposure to enhanced single prolonged stress (ESPS). Anxiety-like and fear learning behaviors; hippocampal neurogenesis; the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (keap1), and heme oxygenase 1 (HO-1); and the activity of AMP-activated kinase (AMPK) were evaluated at 14 days after ESPS. EA pretreatment improved hippocampal neurogenesis and ameliorated anxiety-like behaviors in ESPS-treated rats. EA pretreatment also increased the expression of Nrf2 and HO-1 and the activity of AMPK. Furthermore, Nrf2 knockdown by a short hairpin RNA affected anxiety-like behaviors and expression of neuroprotective markers (BDNF, DCX) in a manner similar to ESPS alone and dampened the neuroprotective effects of EA pretreatment. In contrast, Keap1 knockdown increased the expression of HO-1, improved hippocampal neurogenesis, and alleviated PTSD-like behaviors. Altogether, our results suggest that EA pretreatment ameliorates ESPS-induced anxiety-like behaviors and prevents hippocampal neurogenesis disruption in a rat model of PTSD possibly through regulation of the keap1/Nrf2 antioxidant defense pathway.

19.
Pharmacol Biochem Behav ; 184: 172738, 2019 09.
Article in English | MEDLINE | ID: mdl-31229467

ABSTRACT

The anti-depressant effect of repetitive transcranial magnetic stimulation (rTMS), a clinically-useful treatment for depression, is associated with changes to the endocannabinoid system (ECS). However, it is currently unknown whether different frequencies of rTMS alter the ECS differently. To test this, rats exposed to chronic unpredictable stress (CUS) were treated with rTMS at two different frequencies (5 (high) or 1 Hz (low), 1.26 Tesla) for 7 consecutive days. Twenty-four hours after the final rTMS treatment, we evaluated depressive-like behaviors and the expression of several synaptic proteins and ECS-related proteins in the hippocampus. In addition, we knocked-down diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R), two important components of the ECS, and measured depressive-like behaviors and synaptic protein expression following rTMS. Furthermore, we measured the expression levels of several components of the ECS system in hippocampal-derived astrocytes and neurons exposed to repetitive magnetic stimulation (rMS) with different parameters (5 or 1 Hz, 0.84 or 1.26 Tesla). Interestingly, we found that only high-frequency rTMS ameliorated depressive-like behaviors and normalized the expression of hippocampal synaptic proteins in CUS-treated rats; this effect was eliminated by knockdown of DAGLα or CB1R. Moreover, we found that rMS at 5 Hz increased the expression of DAGLα and CB1R in hippocampal astrocytes and neurons. Collectively, our results suggest that high-frequency rTMS exerts its anti-depressant effect by up-regulating DAGLα and CB1R.


Subject(s)
Depression , Endocannabinoids , Hippocampus , Lipoprotein Lipase , Receptor, Cannabinoid, CB1 , Stress, Physiological , Synapses , Transcranial Magnetic Stimulation , Animals , Female , Male , Pregnancy , Rats , Animals, Newborn , Astrocytes/metabolism , Behavior, Animal , Depression/therapy , Endocannabinoids/genetics , Endocannabinoids/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Hippocampus/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Neurons/metabolism , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Synapses/metabolism , Transcranial Magnetic Stimulation/methods
20.
Article in English | MEDLINE | ID: mdl-30946940

ABSTRACT

Electroacupuncture (EA) is a clinically useful physiological therapy that has been recently adopted to treat several brain disorders. However, the potential role of early EA intervention in the prevention of posttraumatic stress disorder (PTSD) as well as its potential cellular and molecular mechanism has never been investigated previously. In the present study, we used an enhanced single prolonged stress (ESPS) model to access the effects of early EA intervention on the prevention of anxiety-like and fear learning behaviors, as well as the influence of the expression of post-synaptic density protein 95 (PSD95), synaptophysin (Syn), brain derived neurotrophic factor (BDNF), diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R) in the hippocampus with or without DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) in the hippocampus. Moreover, the effects of electrical stimulation with different parameters on the expression of DAGLα and CB1R in the hippocampal astrocytes were also observed. The results showed that Early EA intervention improved hippocampal synaptic plasticity and ameliorated PTSD-like behaviors and also increased expression of BDNF, DAGLα and CB1R. However, either DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) eliminated the neuroprotective effects of early EA intervention. Furthermore, electrical stimulation with 2/15 Hz 1 mA elevated the expression of DAGLα and CB1R. Altogether, our findings provide new insights regarding the possibility of using early EA intervention in the prevention of PTSD, and the protective effects of EA is involving the activation of DAGLα and CB1R.


Subject(s)
Electroacupuncture , Endocannabinoids/metabolism , Hippocampus/metabolism , Stress Disorders, Post-Traumatic/prevention & control , Animals , Blotting, Western , Disease Models, Animal , Electroacupuncture/methods , Male , Maze Learning , Neuronal Plasticity , Neuropsychological Tests , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction , Stress Disorders, Post-Traumatic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...