Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713211

ABSTRACT

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Subject(s)
Chitinases , Gene Silencing , Laccase , Chitinases/genetics , Chitinases/metabolism , Chitinases/biosynthesis , Laccase/genetics , Laccase/metabolism , Laccase/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Agaricales/genetics , Agaricales/enzymology , Fermentation , RNA Interference , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mycelium/genetics , Mycelium/growth & development , Mycelium/enzymology , Cell Wall/metabolism , Cell Wall/genetics
2.
J Neurosci Methods ; 406: 110132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604523

ABSTRACT

BACKGROUND: Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD: Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS: In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS: In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION: Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Exoskeleton Device , Neurofeedback , Humans , Electroencephalography/methods , Male , Neurofeedback/methods , Neurofeedback/instrumentation , Evoked Potentials, Visual/physiology , Adult , Brain/physiology , Brain/physiopathology , Female , Young Adult , Imagination/physiology , Imagery, Psychotherapy/methods
3.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351514

ABSTRACT

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/physiology , Vaccinia virus/physiology , Neutrophils/pathology , Oncolytic Virotherapy/methods , Phosphatidylinositol 3-Kinases , Neoplasms/pathology , Tumor Microenvironment
4.
Int J Mol Med ; 53(1)2024 01.
Article in English | MEDLINE | ID: mdl-37997788

ABSTRACT

Lethal ventricular arrhythmia­sudden cardiac death (LVA­SCD) occurs frequently during the early stage of myocardial ischemia (MI). However, the mechanism underlying higher LVA­SCD incidence is still poorly understood. The present study aimed to explore the role of mitochondrial reactive oxygen species (mROS) and Ca2+ crosstalk in promoting LVA­SCD in early MI. RyR2 S2814A mice and their wild­type littermates were used. MitoTEMPO was applied to scavenge mitochondrial ROS (mROS). Mice were subjected to severe MI and the occurrence of LVA­SCD was evaluated. Levels of mitochondrial ROS and calcium (mitoCa2+), cytosolic ROS (cytoROS), and calcium (cytoCa2+), RyR2 Ser­2814 phosphorylation, CaMKII Met­282 oxidation, mitochondrial membrane potential (MMP), and glutathione/oxidized glutathione (GSH/GSSG) ratio in the myocardia were detected. Dynamic changes in mROS after hypoxia were investigated using H9c2 cells. Moreover, the myocardial phosphoproteome was analyzed to explore the related mechanisms facilitating mROS­Ca2+ crosstalk and LVA­SCD. There was a high incidence (~33.9%) of LVA­SCD in early MI. Mice who underwent SCD displayed notably elevated levels of myocardial ROS and mROS, and the latter was validated in H9c2 cells. These mice also demonstrated overloads of cytoplasmic and mitochondrial Ca2+, decreased MMP and reduced GSH/GSSG ratio, upregulated RyR2­S2814 phosphorylation and CaMKII­M282 oxidation and transient hyperphosphorylation of mitochondrial proteomes in the myocardium. mROS­specific scavenging by a mitochondria­targeted antioxidant agent (MitoTEMPO) corrected these SCD­induced alterations. S2814A mice with a genetically inactivated CaMKII phosphorylation site in RyR2 exhibited decreased overloads in cytoplasmic and mitochondrial Ca2+ and demonstrated similar effects as MitoTEMPO to correct SCD­induced changes and prevent SCD post­MI. The data confirmed crosstalk between mROS and Ca2+ in promoting LVA­SCD. Therefore, we provided evidence that there is a higher incidence of LVA­SCD in early MI, which may be attributed to a positive feedback loop between mROS and Ca2+ imbalance.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Mice , Animals , Calcium/metabolism , Reactive Oxygen Species/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Feedback , Glutathione Disulfide/metabolism , Arrhythmias, Cardiac , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Death, Sudden, Cardiac/etiology , Coronary Artery Disease/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism
5.
Brain Res ; 1821: 148614, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37783262

ABSTRACT

The norepinephrine (NE) system is involved in pathways that regulate morphine addiction. Here, we investigated the role of α1 adrenoceptor in the ventrolateral orbital cortex (VLO) of rats with repeated morphine treatment and underlying molecular mechanisms. The rewarding properties of morphine were assessed by the conditioned place preference (CPP) paradigm. Prazosin, an α1 adrenoceptor antagonist, was microinjected into the VLO. The expression of α1 adrenoceptor, p-CaMKII/CaMKII, CRTC1, BDNF and PSD95 in the VLO were determined by immunohistochemistry or western blotting. Neurotransmitter NE in the VLO and inflammatory factors in serum were detected separately through high-performance liquid chromatography and enzyme-linked immunosorbent assay. Our experimental results showed that repeated morphine administration induced stable CPP and prazosin promoted the morphine-induced CPP. Microinjection of prazosin in the VLO not only blocked the activity of α1 adrenoceptor, decreased CaMKII phosphorylation and CRTC1, which eventually resulted in a regression of synaptic plasticity-related proteins, but also was accompanied by significantly decreasing of NE in the VLO and increasing of inflammatory cytokines in peripheral blood. These findings suggested that prazosin potentiates the addictive effects of morphine. The effect of increased CPP through reducing α1 adrenoceptor and NE was associated with the CaMKII-CRTC1 pathway and synaptic plasticity-related proteins in the VLO and inflammatory cytokines in the peripheral blood. The NE system may therefore be an underlying therapeutic target in morphine addiction. Additionally, we believe that the clinical use of prazosin in hypertensive patients with morphine abuse may be a potential risk because of its reinforcing effect on addiction.


Subject(s)
Morphine Dependence , Morphine , Humans , Rats , Animals , Morphine/pharmacology , Prazosin/pharmacology , Rats, Sprague-Dawley , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Receptors, Adrenergic, alpha-1/metabolism , Cytokines
6.
Burns Trauma ; 11: tkad026, 2023.
Article in English | MEDLINE | ID: mdl-37334139

ABSTRACT

Background: An ideal tension-relieving suture should be efficient for >3 months to retrieve normal tensile strength. Most preexisting suturing techniques provided tension elimination followed by relapse and scar proliferation due to absorption and cut-through of the sutures. This study introduces a simple but effective suture technique developed by a senior author (ZYX) to solve this problem. Methods: A total of 120 patients with pathological scar (PS) had intervention treatment with the proposed suturing strategy at three centers from January 2018 to January 2021. A slowly absorbable 2-0 barbed suture was used for subcutaneous tension relieving with a set-back from the wound edge and a horizontal interval between proposed inserting points of 1 cm. The Patient and Observer Scar Assessment Scale (POSAS), scar width, perfusion and eversion of the wound edge were evaluated at 3-, 6- and 12-month follow-up. The time needed to place the tension-relieving suture was recorded and relapse was monitored for 18 months postoperatively. Results: In total, 76 trunks, 32 extremities and 12 cervical PS were included, with an average subcutaneous tension-relieving suture time of 5 min. The Patient and Observer Scar Assessment Scale (POSAS) score decreased from 84.70 ± 7.06 preoperatively to 28.83 ± 3.09, 26.14 ± 1.92 and 24.71 ± 2.00 at 3, 6 and 12 months postoperatively, respectively (p < 0.0001). The scar widths were 0.17 ± 0.08, 0.25 ± 0.09 and 0.33 ± 0.10 cm, respectively, with perfusion significantly decreased from 213.64 ± 14.97 to 112.23 ± 8.18 at 6 months (p < 0.0001). The wound edge flattened out during the first 3 months in most cases with only two scar relapses. Conclusions: Zhang's suture technique provides a rapid and long-lasting tension-relieving effect with ideal scar appearances and lower relapse rates in the surgical management of PS.

7.
BMC Surg ; 22(1): 222, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35681188

ABSTRACT

BACKGROUND: Repairing all nerves is challenging in cases of upper arm avulsion combined with defects in multiple nerves because the donor area for autogenous nerve transplantation is limited and the outcomes of long-segment allogeneic nerve transplantation are poor. Based on the principle of magnified nerve regeneration, we present a method called nerve merging repair, the feasibility of which needs to be confirmed in clinical practice. METHODS: The nerve merging repair method relies on the use of fewer proximal nerves to innervate more distal nerves and depends mainly on whether the radial nerve (RN) can repair itself. In the case of defects in multiple nerves precluding RN self-repair, median-(median + radial) (M-(M + R)) repair is performed. If the RN can undergo self-repair, median-(median + ulnar) (M-(M + U)) or ulnar-(ulnar + median) (U-(U + M)) is used to repair the three nerves. Five cases were included in the study and involved the analysis of joint motor function, muscle strength and sensory recovery of the affected limb. RESULTS: The replanted limb survived in all 5 cases. Follow-up visits were conducted with the patients for 51-80 months, during which they experienced satisfactory recovery of skin sensation, elbow flexion and extension and partial recovery of hand muscle strength. CONCLUSIONS: To a certain extent, treatment with the nerve merging repair method improved the sensory and motor function of the affected limb and limited the loss of function of the donor nerve area. This intervention provides a new approach for repairing long-segment defects in multiple nerves caused by avulsion amputation of the upper limb.


Subject(s)
Elbow Joint , Plastic Surgery Procedures , Adult , Follow-Up Studies , Humans , Middle Aged , Neurosurgical Procedures , Replantation
8.
J Proteomics ; 261: 104581, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35421619

ABSTRACT

Understanding common and distinct pathophysiological features between acute progressive ischemic stroke (APIS) and acute non-progressive ischemic stroke (ANPIS) is a prerequisite to making clear the mechanism to determine the prognosis of acute ischemic stroke (AIS). Here, we recruited three independent sets of subjects, all of which included the APIS, ANPIS, and control groups. They were used for serum proteomic and metabolomic analyses, and validation of the critical pathophysiological processes and potential biomarkers of APIS, respectively. Results showed that there were both common and distinct metabolome and proteome between APIS and ANPIS. APIS and ANPIS shared basic processes of AIS in inflammation and oxidative stress response. Coagulation and lipid metabolism disorder, activation of the complement system, and inflammation may enhance with each other in the symptom worsening of APIS. The contents of serum amyloid A1 (SAA1) and S100 calcium-binding protein A9 (S100-A9) in the validation set confirmed the key pathophysiological processes indicated by omics data; they also jointly conferred a moderate value to distinguish APIS from ANPIS. Collectively, disturbance in coagulation and lipid metabolism, complement activation, and inflammation may be synergistically involved in symptom deterioration in APIS. SAA1 and S100-A9 serve as a potential biomarker panel to distinguish APIS from ANPIS. THE SIGNIFICANCE: In this study, we integrated serum proteomics and metabolomics to explore the similarities and differences in pathophysiological processes between APIS and ANPIS. The global metabolic networks have been constructed, and the crucial common pathophysiological processes and the key distinct pathophysiological features between APIS and ANPIS were investigated based on the differentially expressed proteins and metabolites (DEPs/DEMs). Furthermore, pivotal serum proteins (SAA1 and S100A9) were detected in a dependent set to validate the key pathophysiological characteristics, as well as to assess the possibility of them being used as a biomarker panel. Taken together, the multi-omics integration strategy used in this clinical study shows potential to comprehensively interpret and compare the pathophysiological processes of AIS in various conditions, as well as to screen a reliable new biomarker panel.


Subject(s)
Ischemic Stroke , Stroke , Animals , Bees , Biomarkers , Humans , Inflammation , Ischemic Stroke/diagnosis , Metabolomics , Proteomics/methods , Stroke/diagnosis
9.
J Proteomics ; 232: 104043, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33161167

ABSTRACT

Lethal ventricular tachyarrhythmias (LVTA)-related sudden cardiac death (SCD) is one of the major causes of death worldwide. However, the mechanisms underlying LVTA induced by myocardial ion channel diseases (MICDs) are not yet fully understood. Here, we produced an LVTA rat model induced by aconitine, to mimic MICDs-elicited LVTA, and constructed a global pathway network via integrating proteomic and lipidomic data, and our previously published metabolomic data. Results showed that both proteome and lipidome were disturbed during the LVTA process. Most of the differentially expressed proteins and lipid species were correlated. Proteomic data indicated disturbance of energy metabolism (e.g. fatty acid ß-oxidation and the tricarboxylic acid cycle) and activation of the protein kinase C and nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase pathway; these alterations led to lowered ATP and elevated ROS, respectively. Altered levels of the Ca2+ handling proteins suggested aberrant intracellular Ca2+ homeostasis, which might also be secondary to the shortage of ATP and oxidative stress. Significantly, the disrupted pathways implied by proteomic data were largely confirmed by lipidomic and metabolomic data. Collectively, we have constructed a metabolic pathway network of aconitine-induced LVTA using a multi-omics strategy, which confers great promise for the deeper interpretation of the mechanisms underlying LVTA. SIGNIFICANCE: In this study, we integrated proteomics, lipidomics and metabolomics to explore the pathophysiological processes of LVTA induced by aconitine. It is innovative to try to integrate these three omics in a study exploring the relative mechanisms. Here, based on the DEPs and differentially abundant lipid species (DALPs) between the LVTA groups and the controls, and the different metabolites discovered previously from the same model, we have successfully constructed a global metabolic network. Taken together, the multi-omics integration strategies used in this study show the potential for a new interpretation of the pathophysiological processes of LVTA induced by different conditions and open the possibility to explore deeper and broader mechanisms of other diseases.


Subject(s)
Lipidomics , Tachycardia, Ventricular , Aconitine , Animals , Metabolic Networks and Pathways , Metabolomics , Proteomics , Rats
10.
Biomark Med ; 14(2): 119-130, 2020 02.
Article in English | MEDLINE | ID: mdl-32057273

ABSTRACT

Aim: We aimed to identify metabolic characteristics of early-stage heart failure (HF) and related biomarkers. Patients & methods: One hundred and forty-three patients with New York Heart Association class I-IV HF and 34 healthy controls were recruited. Serum metabolic characteristics of class I HF were analyzed and compared with those of class II-IV HF. Potential biomarkers of class I HF with normal N-terminal-pro-B-type natriuretic peptide (NT-proBNP) level were screened and validated in additional 72 subjects (46 class I patients and 26 controls). Results & conclusion: Eleven metabolites were found disturbed in class I HF, and five of which were also disturbed in class II-IV HF. Glutamine and tyrosine showed high value to identify class I HF with normal NT-proBNP level. The diagnostic potential of glutamine was partially confirmed in the validate set, holding a promise to detect early HF with normal NT-proBNP level.


Subject(s)
Biomarkers/blood , Glutamine/blood , Heart Failure/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Tyrosine/blood , Aged , Aged, 80 and over , Biomarkers/metabolism , Female , Gas Chromatography-Mass Spectrometry/methods , Heart Failure/diagnosis , Heart Failure/metabolism , Humans , Male , Metabolomics/methods , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
11.
Eur J Pharmacol ; 842: 248-254, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30391747

ABSTRACT

As a nuclear receptor, peroxisome proliferator-activated receptor-δ (PPARδ) plays a critical role in regulating inflammation and cancer, while it is still unclear the mechanism of PPARδ agonist GW501516 on colitis-associated colorectal cancer. Here we found that GW501516 significantly enhanced colitis-associated colorectal cancer in AOM/DSS-induced mice. In addition, PPARδ agonist GW501516 enhanced pro-inflammatory gene expressions (COX-2, IL-6, IL-8 and MCP-1) in inflamed colon. Further analysis showed that GW501516 increased the expressions of Glut1 and SLC1A5 in colon cancer cells as well as AOM/DSS-induced colorectal tumors. These findings revealed a new mechanism of PPARδ agonist GW501516-mediated colitis-associated colorectal cancer.


Subject(s)
Colitis/complications , Colorectal Neoplasms/complications , Colorectal Neoplasms/pathology , PPAR delta/agonists , Thiazoles/pharmacology , Animals , Carcinogenesis/chemically induced , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred C57BL
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 31(3): 323-326, 2017 03 15.
Article in Chinese | MEDLINE | ID: mdl-29806262

ABSTRACT

Objective: To explore the causes of vascular crisis after thumb and other finger reconstruction by toe-to-hand transfer and effective treatment methods so as to improve the survival rate of transplanted tissues. Methods: Between February 2012 and October 2015, 59 cases of thumb and other finger defects were repaired with different hallux nail flaps with the same vascular pedicle flap to reconstruct thumb and other fingers and repair skin defect. The donor site was repaired by a perforator flap. A total of 197 free tissues were involved. There were 46 males and 13 females with the average age of 30.6 years (range, 18-42 years). Vascular crisis occurred in 21 free tissues (10.7%) of 17 patients, including 9 arterial crisis (4.6%) of 8 cases, and 12 venous crisis (6.1%) of 10 cases. Conservative treatment was performed first; in 8 free tissues of 7 cases after failure of conservative treatment, anastomotic thrombosis was found in 5 free tissues of 4 cases, twisted vascular pedicle in 1 free tissue of 1 case, surrounding hematoma in 1 free tissue of 1 case, and anastomotic thrombosis associated with hematoma in 1 free tissue of 1 case, which underwent clearing hematoma, resecting embolization, regulating vascular tension, re-anastomosis or vascular transplantation. Results: In 8 cases of arterial crisis, 5 free tissues of 5 cases survived after conservative treatment; partial necrosis occurred in 1 free tissue (1 case) of 4 free tissues (3 cases) undergoing surgical exploration. In 10 cases of venous crisis, 1 free tissue necrosis and 1 free tissue partial necrosis occurred in 8 free tissues (6 cases) undergoing conservative treatment; partial necrosis occurred in 1 free tissue of 4 free tissues (4 cases) undergoing surgical exploration. Free flap and skin graft were performed on 2 free tissues of 4 cases having flap necrosis respectively. Conclusion: Vascular crisis is complex and harmful to survival of transplanted tissue in reconstruction of the thumb and other fingers. Immediate intervention is helpful to obtain a higher survival rate.


Subject(s)
Finger Injuries/surgery , Hematoma/etiology , Skin Transplantation , Soft Tissue Injuries/surgery , Thrombosis/etiology , Thumb/surgery , Adolescent , Adult , Female , Follow-Up Studies , Humans , Male , Plastic Surgery Procedures , Thumb/blood supply , Treatment Outcome , Young Adult
13.
Neural Regen Res ; 10(1): 79-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25788924

ABSTRACT

Repair techniques for short-distance peripheral nerve defects, including adjacent joint flexion to reduce the distance between the nerve stump defects, "nerve splint" suturing, and nerve sleeve connection, have some disadvantages. Therefore, we designed a repair technique involving intraoperative tension-free application of a nerve elongator and obtained good outcomes in the repair of short-distance peripheral nerve defects in a previous animal study. The present study compared the clinical outcomes between the use of this nerve elongator and performance of the conventional method in the repair of short-distance transection injuries in human elbows. The 3-, 6-, and 12-month postoperative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the conventional group, but no significant difference in long-term neurological function recovery was detected between the two groups. In the nerve elongation group, the nerves were sutured without tension, and the duration of postoperative immobilization of the elbow was decreased. Elbow function rehabilitation was significantly better in the nerve elongation group than in the control group. Moreover, there were no security risks. The results of this study confirm that the use of this nerve elongator for repair of short-distance peripheral nerve defects is safe and effective.

SELECTION OF CITATIONS
SEARCH DETAIL
...