Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830239

ABSTRACT

The demand for green hydrogen has raised concerns over the availability of iridium used in oxygen evolution reaction catalysts. We identify catalysts with the aid of a machine learning-aided computational pipeline trained on more than 36,000 mixed metal oxides. The pipeline accurately predicts Pourbaix decomposition energy (Gpbx) from unrelaxed structures with a mean absolute error of 77 meV per atom, enabling us to screen 2070 new metallic oxides with respect to their prospective stability under acidic conditions. The search identifies Ru0.6Cr0.2Ti0.2O2 as a candidate having the promise of increased durability: experimentally, we find that it provides an overpotential of 267 mV at 100 mA cm-2 and that it operates at this current density for over 200 h and exhibits a rate of overpotential increase of 25 µV h-1. Surface density functional theory calculations reveal that Ti increases metal-oxygen covalency, a potential route to increased stability, while Cr lowers the energy barrier of the HOO* formation rate-determining step, increasing activity compared to RuO2 and reducing overpotential by 40 mV at 100 mA cm-2 while maintaining stability. In situ X-ray absorption spectroscopy and ex situ ptychography-scanning transmission X-ray microscopy show the evolution of a metastable structure during the reaction, slowing Ru mass dissolution by 20× and suppressing lattice oxygen participation by >60% compared to RuO2.

2.
Nat Commun ; 15(1): 4712, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830888

ABSTRACT

Low-energy consumption seawater electrolysis at high current density is an effective way for hydrogen production, however the continuous feeding of seawater may result in the accumulation of Cl-, leading to severe anode poisoning and corrosion, thereby compromising the activity and stability. Herein, CoFeAl layered double hydroxide anodes with excellent oxygen evolution reaction activity are synthesized and delivered stable catalytic performance for 350 hours at 2 A cm-2 in the presence of 6-fold concentrated seawater. Comprehensive analysis reveals that the Al3+ ions in electrode are etched off by OH- during oxygen evolution reaction process, resulting in M3+ vacancies that boost oxygen evolution reaction activity. Additionally, the self-originated Al(OH)n- is found to adsorb on the anode surface to improve stability. An electrode assembly based on a micropore membrane and CoFeAl layered double hydroxide electrodes operates continuously for 500 hours at 1 A cm-2, demonstrating their feasibility in brine electrolysis.

3.
Angew Chem Int Ed Engl ; : e202406082, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807303

ABSTRACT

Commercial alkaline water electrolysers typically operate at 80 °C to minimize energy consumption. However, NiFe-based catalysts, considered as one of the most promising candidates for anode, encounter the bottleneck of high solubility at such temperatures. Herein, we discover that the dissolution of NiFe layered double hydroxides (NiFe-LDH) during operation not only leads to degradation of anode itself, but also deactivates cathode for water splitting, resulting in decay of overall electrocatalytic performance. Aiming to suppress the dissolution, we employed oxyanions as inhibitors in electrolyte. The added phosphates to the electrolyte inhibit the loss of NiFe-LDH active sites at 400 mA cm-2 to 1/3 of the original amount, thus reducing the rate of performance decay by 25-fold. Furthermore, the usage of borates, sulfates, and carbonates yields similar results, demonstrating the reliability and universality of the active site dissolution inhibitor, and its role in elevated water electrolysis.

5.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438342

ABSTRACT

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

6.
Adv Mater ; : e2312778, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421936

ABSTRACT

Hydrogenation of biomass-derived chemicals is of interest for the production of biofuels and valorized chemicals. Thermochemical processes for biomass reduction typically employ hydrogen as the reductant at elevated temperatures and pressures. Here, the authors investigate the direct electrified reduction of 5-hydroxymethylfurfural (HMF) to a precursor to bio-polymers, 2,5-bis(hydroxymethyl)furan (BHMF). Noting a limited current density in prior reports of this transformation, a hybrid catalyst consisting of ternary metal nanodendrites mixed with a cationic ionomer, the latter purposed to increase local pH and facilitate surface proton diffusion, is investigated. This approach, when implemented using Ga-doped Ag-Cu electrocatalysts designed for p-d orbital hybridization, steered selectivity to BHMF, achieving a faradaic efficiency (FE) of 58% at 100 mA cm-2 and a production rate of 1 mmol cm-2 h-1, the latter a doubling in rate compared to the best prior reports.

7.
J Am Chem Soc ; 145(14): 7829-7836, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010254

ABSTRACT

Acidic water electrolysis enables the production of hydrogen for use as a chemical and as a fuel. The acidic environment hinders water electrolysis on non-noble catalysts, a result of the sluggish kinetics associated with the adsorbate evolution mechanism, reliant as it is on four concerted proton-electron transfer steps. Enabling a faster mechanism with non-noble catalysts will help to further advance acidic water electrolysis. Here, we report evidence that doping Ba cations into a Co3O4 framework to form Co3-xBaxO4 promotes the oxide path mechanism and simultaneously improves activity in acidic electrolytes. Co3-xBaxO4 catalysts reported herein exhibit an overpotential of 278 mV at 10 mA/cm2 in 0.5 M H2SO4 electrolyte and are stable over 110 h of continuous water oxidation operation. We find that the incorporation of Ba cations shortens the Co-Co distance and promotes OH adsorption, findings we link to improved water oxidation in acidic electrolyte.

8.
Chem Rev ; 122(23): 17028-17072, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36137296

ABSTRACT

Adsorption energy (AE) of reactive intermediate is currently the most important descriptor for electrochemical reactions (e.g., water electrolysis, hydrogen fuel cell, electrochemical nitrogen fixation, electrochemical carbon dioxide reduction, etc.), which can bridge the gap between catalyst's structure and activity. Tracing the history and evolution of AE can help to understand electrocatalysis and design optimal electrocatalysts. Focusing on oxygen electrocatalysis, this review aims to provide a comprehensive introduction on how AE is selected as the activity descriptor, the intrinsic and empirical relationships related to AE, how AE links the structure and electrocatalytic performance, the approaches to obtain AE, the strategies to improve catalytic activity by modulating AE, the extrinsic influences on AE from the environment, and the methods in circumventing linear scaling relations of AE. An outlook is provided at the end with emphasis on possible future investigation related to the obstacles existing between adsorption energy and electrocatalytic performance.


Subject(s)
Hydrogen , Oxygen , Adsorption , Nitrogen Fixation , Water
9.
J Am Chem Soc ; 144(5): 2255-2263, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35094512

ABSTRACT

Noble metals have an irreplaceable role in catalyzing electrochemical reactions. However, large overpotential and poor long-term stability still prohibit their usage in many reactions (e.g., oxygen evolution/reduction). With regard to the low natural abundance, the improvement of their overall electrocatalytic performance (activity, selectivity, and stability) was urgently necessary. Herein, strong metal-support interaction (SMSI) was modulated through an unprecedented time-dependent mechanical milling method on Pd-loaded oxygenated TiC electrocatalysts. The encapsulation of Pd surfaces with reduced TiO2-x overlayers is precisely controlled by the mechanical milling time. This encapsulation induced a valence band restructuring and lowered the d-band center of surface Pd atoms. For hydrogen peroxide electrosynthesis through the two-electron oxygen reduction reaction (ORR), these electronic and geometric modifications resulted in optimal adsorption energies of reaction intermediates. Thus, SMSI phenomena not only enhanced electrocatalytic activity and selectivity but also created an encapsulating oxide overlayer that protected the Pd species, increasing its long-term stability. This SMSI induced by mechanical milling was also extended to other noble metal systems, showing great promise for the large-scale production of highly stable and tunable electrocatalysts.

10.
ChemSusChem ; 14(24): 5359-5383, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34704377

ABSTRACT

The development of a low-cost and high-efficiency oxygen evolution reaction (OER) catalyst is essential to meet the future industrial demand for hydrogen production by electrochemical water splitting. Given the limited reserves of noble metals and many competitive applications in environmental protection, new energy, and chemical industries, many studies have focused on exploring new and efficient non-noble metal catalytic systems, improving the understanding of the OER mechanism of non-noble metal surfaces, and designing electrocatalysts with higher activity than traditional noble metals. This Review summarizes the research progress of anode OER catalysts for hydrogen production by electrochemical water splitting in recent years, for noble metal and non-noble metal catalysts, where non-noble metal catalysts are highlighted. The categories are as follows: (1) Transition metal-based compounds, including transition metal-based oxides, transition metal-based layered hydroxides, and transition metal-based sulfides, phosphides, selenides, borides, carbides, and nitrides. Transition metal-based oxides can also be divided into perovskite, spinel, amorphous, rock-salt-type, and lithium oxides according to their different structures. (2) Carbonaceous materials and their composite materials with transition metals. (3) Transition metal-based metal-organic frameworks and their derivatives. Finally, the challenges and future development of the OER process of water splitting are discussed.

11.
Chem Soc Rev ; 50(15): 8790-8817, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34160484

ABSTRACT

The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane-electrode-assembly based electrolysers, are emphasized to shed light on future research directions.

12.
Langmuir ; 36(39): 11422-11428, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32862650

ABSTRACT

Understanding of dynamic behaviors of gas bubbles on solid surfaces has significant impacts on gas-involving electrochemical reactions, mineral flotation, and so on in industry. Contact angle (θ) is widely employed to characterize the wetting behaviors of bubbles on solid surfaces; however, it usually fluctuates within the bubble's advancing (θa) and receding (θr) range. Although the term of most-stable contact angle (θms) was defined previously as the closest valuable approximation for thermodynamically meaningful contact angle for a droplet on a solid surface, it has not been widely studied; and the precise θms measurement methods are inadequate to describe bubbles' wetting behaviors on solid surfaces. Herein, we proposed to take θms as the mean value of θa and θr, as a more accurate descriptor of gas bubbles' dynamic behaviors on nonideal solid surfaces, similar to the definition of droplets' θms on solid surfaces. The feasibility and accuracy of the proposed θms have been evidenced by recording the bubbles' contacting behaviors on solid surfaces with varied wettabilities. In addition, it was found that the contact angle hysteresis (δ), as the difference between θa and θr, reached its maximum value when θms approached 90°, regardless of the roughness (r) of the substrates. Finally, built on the above concept, the lateral adhesion force (f) of the gas bubble on the solid interface, which worked on the three-phase contact line (TPCL) of an individual bubble on a solid surface against its lateral motion during the bubble advancing or receding process, was described quantitatively by combining θa, θr, and the liquid-gas interfacial tension (γlg). Experimental and theoretical data jointly confirmed that f reached its maximum value at θms ∼ 90°, namely, a "super-sticky" state, which described the dynamically most sluggish movement of the bubble along the solid surface.

13.
Inorg Chem ; 59(3): 1804-1809, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31940197

ABSTRACT

The rational design of hollow-structured materials with high specific area, advanced mass transfer, and exposure of selected sites is of great significance in both fundamental scientific research and applicable industrialization fields. In this work, we report a CoAl layered double hydroxides (LDH) nanoring evolved from integrate nanosheet in a urea hydrolysis process, showing enhanced oxygen reduction reaction activity. Detailed investigations into the evolution nature suggest that a gradient-increased Al3+ composition exists in the core region of the nanosheet arised from distinctly lower solubility of Al3+ than Co2+ in the synthesis; therefore, the selective etching of Al3+ by OH- produced from urea hydrolysis leads to the formation of nanoring structure. Probed as an oxygen reduction reaction catalyst, the CoAl-LDH nanoring illustrates a half-wave potential lowered by around 110 mV compared to the integrate nanosheet counterpart, which might be due to the exposure of more edge sites with higher activity. This work paves a novel route for fabricating hollow-structured Al-contained metal hydroxides with defined outer edge and inner voids for multiple purposes.

14.
Adv Mater ; 31(41): e1903909, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31461181

ABSTRACT

NiFe-based layered double hydroxides (LDHs) are among the most efficient oxygen evolution reaction (OER) catalysts in alkaline medium, but their long-term OER stabilities are questionable. In this work, it is demonstrated that the layered structure makes bulk NiFe LDH intrinsically not stable in OER and the deactivation mechanism of NiFe LDH in OER is further revealed. Both operando electrochemical and structural characterizations show that the interlayer basal plane in bulk NiFe LDH contributes to the OER activity, and the slow diffusion of proton acceptors (e.g., OH- ) within the NiFe LDH interlayers during OER causes dissolution of NiFe LDH and therefore decrease in OER activity with time. To improve diffusion of proton acceptors, it is proposed to delaminate NiFe LDH into atomically thin nanosheets, which is able to effectively improve OER stability of NiFe LDH especially at industrial operating conditions such as elevated operating temperatures (e.g., at 80 °C) and large current densities (e.g., at 500 mA cm-2 ).

15.
Sci Bull (Beijing) ; 64(6): 391-399, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-36659730

ABSTRACT

Solar-powered desalination is a promising way to resolve the worldwide water crisis for its low consumption and simple facility. Considering the fragility and aggregations of traditional materials, which may decrease efficiency, we herein introduce a robust tungsten carbide (WC) nanoarray film as a stable and efficient photothermal material, whose absorption is over 97.5% throughout almost the whole solar spectrum range (220-2200 nm) due to nanoarray structure and thus enhanced localized surface plasmon resonance. Besides, for the first time, we modified the film with sandwich wettability. It accelerates evaporation by reducing water's reflection of light, enlarging hydrophobic-hydrophilic boundaries, and depressing heat dissipation. Combining high absorption with unique wettability, the WC nanoarray film offers high solar-to-vapor efficiency of 90.8% and produces drinking water at the rate of (1.06 ±â€¯0.10) kg m-2 h-1 from man-made seawater and (0.98 ±â€¯0.18) kg m-2 h-1 from heavy metal sewage under one sun (AM 1.5) while 98% performance remains after 1 h × 100 times' reutilization.

16.
Angew Chem Int Ed Engl ; 58(3): 736-740, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30461141

ABSTRACT

The binding strength of reactive intermediates with catalytically active sites plays a crucial role in governing catalytic performance of electrocatalysts. NiFe hydroxide offers efficient oxygen evolution reaction (OER) catalysis in alkaline electrolyte, however weak binding of oxygenated intermediates on NiFe hydroxide still badly limits its catalytic activity. Now, a facile ball-milling method was developed to enhance binding strength of NiFe hydroxide to oxygenated intermediates via generating tensile strain, which reduced the anti-bonding filling states in the d orbital and thus facilitated oxygenated intermediates adsorption. The NiFe hydroxide with tensile strain increasing after ball-milling exhibits an OER onset potential as low as 1.44 V (vs. reversible hydrogen electrode) and requires only a 270 mV overpotential to reach a water oxidation current density of 10 mA cm-2 .

17.
Angew Chem Int Ed Engl ; 57(30): 9392-9396, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29889350

ABSTRACT

Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+ -containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm-2 , which is among the best OER catalytic performance to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.

18.
Nanoscale Horiz ; 3(5): 532-537, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-32254139

ABSTRACT

Foreign metal ions with reducing ability were doped into NiFe layered double hydroxides (NiFe-LDHs) to activate the basal plane in NiFe-LDHs for oxygen evolution reaction (OER). Mn2+-Doped NiFe-LDH array electrode yields a low onset potential of 1.41 V and exhibits outstanding stability. The study herein illustrates a new dimension of electronic structure regulation and promises further optimization of highly efficient electrocatalysts.

19.
RSC Adv ; 8(46): 26004-26010, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-35541924

ABSTRACT

The fabrication of cost effective and efficient electrocatalysts with functional building blocks to replace noble metal ones is of great importance for energy related applications yet remains a great challenge. Herein, we report the fabrication of a hierarchical structure containing CNTs/graphene/transition-metal hybrids (h-NCNTs/Gr/TM) with excellent bifunctional oxygen electrocatalytic activity. The synthesis was rationally designed by the growth of shorter nitrogen-doped CNTs (S-NCNTs) on longer NCNTs arrays (L-NCNTs), while graphene layers were in situ generated at their interconnecting sites. The hybrid material shows excellent OER and ORR performance, and was also demonstrated to be a highly active bifunctional catalyst for Zn-air batteries, which could be due to rapid electron transport and full exposure of active sites in the hierarchical structure.

20.
Small ; 13(41)2017 11.
Article in English | MEDLINE | ID: mdl-28891263

ABSTRACT

Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm-2 , along with a Tafel slope of 45 mV decade-1 , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...