Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 916: 170339, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278253

ABSTRACT

Artificial light at night has become an emerging environmental pollutant, posing a serious threat to biodiversity. Cave-roosting animals are vulnerable to light pollution due to long-term adaptation to nocturnal niches, and the problem is especially severe in the context of cave tourism and limestone mining. Mitigating the adverse impacts of artificial light on cave-dwelling animals presents a challenge. This study aimed to assess the relative contributions of spectral parameters and light intensity to the emergence behavior of nine cave-roosting bat species: Rhinolophus macrotis, Rhinolophus pearsonii, Rhinolophus rex, Rhinolophus pusillus, Rhinolophus siamensis, Rhinolophus sinicus, Hipposideros armiger, Myotis davidii, and Miniopterus fuliginosus. We manipulated light spectra and intensities through light-emitting diode (LED) lighting and gel filters at the entrance of bat roost. We monitored nightly passes per species to quantify bat emergence under the dark control and ten lighting conditions (blue, green, yellow, red, and white light at high and low intensities) using ultrasonic recording. Our analyses showed that the number of bat passes tended to be reduced in the presence of white, green, and yellow light, independent of light intensity. In contrast, the number of bat passes showed no pronounced differences under the dark control, blue light, and red light. The number of bat passes was primarily affected by LED light's blue component, red component, peak wavelength, and half-width instead of light intensity. These results demonstrate that spectral parameters of LED light can significantly affect emergence behavior of cave-dwelling bats. Our findings highlight the importance of manipulating light colors to reduce the negative impacts of light pollution on cave-roosting bats as a function of their spectral sensitivity. We recommend the use of gel filters to manage existing artificial lighting systems at the entrance of bat-inhabited caves.


Subject(s)
Chiroptera , Animals , Chiroptera/physiology , Caves , Lighting , Animals, Domestic , Light
2.
Integr Zool ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987100

ABSTRACT

Artificial light at night has been considered an emerging threat to global biodiversity. However, the impacts of artificial light on foraging behavior in most wild animals remain largely unclear. Here, we aimed to assess whether artificial light affects foraging behavior in Asian parti-colored bats (Vespertilio sinensis). We manipulated the spectra of light-emitting diode (LED) lighting in a laboratory. Using video and audio recording, we monitored foraging onset, total foraging time, food consumption, freezing behavior (temporary cessation of body movement), and echolocation vocalizations in triads of bats under each lighting condition. Analyses showed that the foraging activities of experimental bats were reduced under LED light. Green, yellow, and red light had greater negative effects on bats' foraging onset, total foraging time, and food consumption than white and blue light. LED light of different spectra induced increased freezing time and echolocation vocalizations in captive bats, except for the white light. The peak wavelength of light emission correlated positively with freezing time, estimated echolocation pulse rate (the number of echolocation pulses per minute), and foraging onset, but negatively with total foraging time and food consumption. These results demonstrate that artificial light disturbs foraging behavior in Asian parti-colored bats. Our findings have implications for understanding the influencing mechanism of light pollution on bat foraging.

3.
Ecol Evol ; 12(6): e8976, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784026

ABSTRACT

The expansion of anthropogenic noise poses an emerging threat to the survival and reproductive success of various organisms. Previous investigations have focused on the detrimental effects of anthropogenic noise on the foraging behavior in some terrestrial and aquatic animals. Nevertheless, the role of airport noise in impairing foraging activities of most wild animals has been neglected. Here, we aimed to assess whether foraging behavior in free-living Japanese pipistrelle bats (Pipistrellus abramus) can be disturbed by airport noise. We used audio recording to monitor foraging activities of bats at 11 sites around the runway of a municipal airport. We quantified noise level and spectra, aircraft activity, habitat type, nightly temperature, wind speed, and moon phase for each site. The analysis revealed that noise level and aircraft activity were significant negative predictors for the number of bat passes and feeding buzzes around the runway, even after controlling for the effects of other environmental factors. There was no marked spectral overlap between bat echolocation pulses and airport noise in the presence and absence of low-flying aircraft. The spectro-temporal parameters of echolocation vocalizations emitted by bats were dependent on noise level, aircraft activity, and habitat type. These results provide correlative evidence that airport noise can reduce foraging activities of wild pipistrelle bats. Our findings add to the current knowledge of adverse impacts of airport noise on foraging bats in artificial ecosystems and provide a basis for further research on the mechanisms behind noise pollution near airports.

SELECTION OF CITATIONS
SEARCH DETAIL
...