Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172422, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614329

ABSTRACT

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

2.
Food Chem ; 410: 135293, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36608557

ABSTRACT

An ultra-sensitive and selective electrochemical sensor was proposed through the combination of carbon disulfide-functionalized graphene oxide (GOCS) composite with high conductivity and cadmium ion-imprinted polymer (IIP). Using pyrrole as the functional monomer and Cd2+ as the template ion, the IIP was formed by in situ electropolymerization on GOCS composite. Under the optimized experimental conditions, the sensor exhibited a good linear relationship in the range of 0.5-50 µg/L Cd2+ concentration, with the lowest detection limit of 0.23 µg/L. The sensor exhibited not only good selectivity for the determination of Cd2+, but also good repeatability with current response remaining 87.6 % after four cycles. Furthermore, the sensor exhibited similar sensing performance in lettuce, orange and peach with recovery ranging from 82.6 % to 110.63 %. This work is expected to provide an electrochemical sensor with excellent selectivity, good stability and sensitivity for the detection of trace amounts of Cd2+ in real samples.


Subject(s)
Molecular Imprinting , Polymers , Cadmium , Electrochemical Techniques , Limit of Detection , Electrodes
3.
Angew Chem Int Ed Engl ; 58(45): 16077-16081, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31529587

ABSTRACT

Interest has been growing in defects of halide perovskites in view of their intimate connection with key material optoelectronic properties. In perovskite quantum dots (PQDs), the influence of defects is even more apparent than in their bulk counterparts. By combining experiment and theory, we report herein a halide-vacancy-driven, ligand-directed self-assembly process of CsPbBr3 PQDs. With the assistance of oleic acid and didodecyldimethylammonium sulfide, surface-Br-vacancy-rich CsPbBr3 PQDs self-assemble into nanowires (NWs) that are 20-60 nm in width and several millimeters in length. The NWs exhibit a sharp photoluminescence profile (≈18 nm full-width at-half-maximum) that peaks at 525 nm. Our findings provide insight into the defect-correlated dynamics of PQDs and defect-assisted fabrication of perovskite materials and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...